RESUMEN
KEY POINTS: Muscle fibre cross sectional area is enhanced with massage in the form of cyclic compressive loading during regrowth after atrophy. Massage enhances protein synthesis of the myofibrillar and cytosolic, but not the mitochondrial fraction, in muscle during regrowth. Focal adhesion kinase activation and satellite cell number are elevated in muscles undergoing massage during regrowth. Muscle fibre cross sectional area and protein synthesis of the myofibrillar fraction, but not DNA synthesis, are elevated in muscle of the contralateral non-massaged limb. Massage in the form of cyclic compressive loading is a potential anabolic intervention during muscle regrowth after atrophy. ABSTRACT: Massage, in the form of cyclic compressive loading (CCL), is associated with multiple health benefits, but its potential anabolic effect on atrophied muscle has not been investigated. We hypothesized that the mechanical activity associated with CCL induces an anabolic effect in skeletal muscle undergoing regrowth after a period of atrophy. Fischer-Brown Norway rats at 10 months of age were hindlimb unloaded for a period of 2 weeks. The rats were then allowed reambulation with CCL applied at a 4.5 N load at 0.5 Hz frequency for 30 min every other day for four bouts during a regrowth period of 8 days. Muscle fibre cross sectional area was enhanced by 18% with massage during regrowth compared to reloading alone, and this was accompanied by elevated myofibrillar and cytosolic protein as well as DNA synthesis. Focal adhesion kinase phosphorylation indicated that CCL increased mechanical stimulation, while a higher number of Pax7+ cells likely explains the elevated DNA synthesis. Surprisingly, the contralateral non-massaged limb exhibited a comparable 17% higher muscle fibre size compared to reloading alone, and myofibrillar protein synthesis, but not DNA synthesis, was also elevated. We conclude that massage in the form of CCL induces an anabolic response in muscles regrowing after an atrophy-inducing event. We suggest that massage can be used as an intervention to aid in the regrowth of muscle lost during immobilization.
Asunto(s)
Miembro Posterior/fisiología , Masaje/métodos , Músculo Esquelético/crecimiento & desarrollo , Atrofia Muscular/terapia , Células Satélite del Músculo Esquelético/citología , Animales , Células Cultivadas , Masculino , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344RESUMEN
BACKGROUND: We have shown functional expression of several TRP channels on human synovial cells, proposing significance in known calcium dependent proliferative and secretory responses in joint inflammation. The present study further characterizes synoviocyte TRP expression and activation responses to thermal and osmotic stimuli after pre-treatment with proinflammatory mediator tumor necrosis factor alpha (TNF-alpha, EC50 1.3221 x 10(-10) g/L). RESULTS: Fluorescent imaging of Fura-2 loaded human SW982 synoviocytes reveals immediate and delayed cytosolic calcium oscillations elicited by (1) TRPV1 agonists capsaicin and resiniferatoxin (20-40% of cells), (2) moderate and noxious temperature change, and (3) osmotic stress TRPV4 activation (11.5% of cells). TNF-alpha pre-treatment (1 ng/ml, 8-16 hr) significantly increases (doubles) capsaicin responsive cell numbers and [Ca2+]i spike frequency, as well as enhances average amplitude of temperature induced [Ca2+]i responses. With TNF-alpha pre-treatment for 8, 12, and 16 hr, activation with 36 or 45 degree bath solution induces bimodal [Ca2+]i increase (temperature controlled chamber). Initial temperature induced rapid transient spikes and subsequent slower rise reflect TRPV1 and TRPV4 channel activation, respectively. Only after prolonged TNF-alpha exposure (12 and 16 hr) is recruitment of synoviocytes observed with sensitized TRPV4 responses to hypoosmolarity (3-4 fold increase). TNF-alpha increases TRPV1 (8 hr peak) and TRPV4 (12 hr peak) immunostaining, mRNA and protein expression, with a TRPV1 shift to membrane fractions. CONCLUSION: TNF-alpha provides differentially enhanced synoviocyte TRPV1 and TRPV4 expression and [Ca2+]i response dependent on the TRP stimulus and time after exposure. Augmented relevance of TRPV1 and TRPV4 as inflammatory conditions persist would provide calcium mediated cell signaling required for pathophysiological responses of synoviocytes in inflammatory pain states.
Asunto(s)
Membrana Sinovial/citología , Membrana Sinovial/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Capsaicina/farmacología , Línea Celular , Diterpenos/farmacología , Expresión Génica/efectos de los fármacos , Humanos , Presión Osmótica/efectos de los fármacos , Fármacos del Sistema Sensorial/farmacología , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Temperatura , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/genéticaRESUMEN
Massage is a widely accepted manual therapy used to modulate the inflammatory response of muscle and restore function, but prolonged compression of muscle potentially causes overt injury and damage to muscle fibers. Therefore, a balance exists between the positive effects of massage and the induction of mechanical damage and injury. In addition, skeletal muscle of aged individuals displays increased stiffness, and therefore, the response to massage is likely different compared with young. We hypothesized that the aged skeletal muscle exhibits increased sarcolemmal permeability when subjected to massage compared with young skeletal muscle. Male Brown Norway/F344 rats, 10 and 30 months of age, were each divided into control, non-massaged (n = 8) and massaged (n = 8) groups. The right gastrocnemius muscle received one bout of cyclic compressive loading for 30 min at 4.5 N as a massage-mimetic. Muscles were dissected and frozen 24 h after massage. Alterations in sarcolemma permeability were quantified by measuring the level of intracellular IgG within the muscle fibers. Immunohistochemistry was performed to determine IgG inside fibers and Pax7+ cell number as an indicator of stem cell abundance. Average IgG intensity was not different between control and massaged animals at either age. However, a significant shift to the right of the density histogram indicated that massaged animals had more fibers with higher IgG intensity than control at 10 months. In addition, Pax7+ cell number was significantly elevated in massaged muscles compared with control at both ages. One bout of massage did not induce overt muscle injury, but facilitated membrane permeability, which was associated with an increase in satellite cell number. Data suggest that the load applied here, which was previously shown to induce immunomodulatory changes, does not induce overt muscle injury in young and old muscles but may result in muscle remodeling. Funded by NIH grant AG042699 and AT009268.
Asunto(s)
Permeabilidad de la Membrana Celular , Masaje , Músculo Esquelético/metabolismo , Sarcolema/metabolismo , Células Satélite del Músculo Esquelético/metabolismo , Animales , Inmunoglobulina G/metabolismo , Masculino , Músculo Esquelético/crecimiento & desarrollo , Factores de Transcripción Paired Box/metabolismo , Ratas , Ratas Endogámicas F344RESUMEN
Cyclic compressive loading (CCL) is a massage mimetic that improves muscle regrowth from atrophy in adult rats. Therefore, we tested if a single bout of CCL increases anabolic signaling and protein synthesis in muscle during normal, weight-bearing conditions in gastrocnemius muscle from adult and aged rats. Male Brown Norway/F344 rats at 10 (adult) and 30 (aged) months of age were assigned control or CCL (receiving a single bout of CCL). Twenty-four hours following a single bout of CCL there was no change in protein synthesis, Akt, or GSK3ß signaling at either age, despite adult rats having higher abundance and activation of mechanosensitive pathways (integrins and integrin-linked kinase). Murf1 was elevated in response to CCL in both age groups, potentially indicating muscle remodeling. Muscle from aged rats exhibited an increase in heat shock protein (HSP) 25 and HSP70 and in the cold shock protein RNA-binding motif 3 (RBM3), demonstrating a unique stress response to CCL in aged muscle only. Finally, muscle from aged rats exhibited higher basal protein synthesis that was corroborated by elevated eIF2Bε and rpS6 signaling, without an additional effect of CCL. In summary, a single bout of CCL does not have anabolic effects on skeletal muscle during normal, weight-bearing conditions, even though it has previously been shown to improve regrowth from atrophy. These data demonstrate that interventions that may help recover from atrophy do not necessarily induce muscle hypertrophy in unperturbed conditions.NEW & NOTEWORTHY Massage has been demonstrated to be an effective mechanotherapy to improve recovery from atrophy in adult skeletal muscle; however, this study shows that a single bout of massage fails to increase protein synthesis or anabolic signaling in adult or aged skeletal muscle during normal, weight-bearing conditions. Altogether, our data suggest massage is a useful mechanotherapy for preserving skeletal muscle when combined with other interventions but is not an anabolic stimulus on its own.
Asunto(s)
Envejecimiento/fisiología , Músculo Esquelético/fisiopatología , Atrofia Muscular/fisiopatología , Envejecimiento/metabolismo , Animales , Proteínas HSP70 de Choque Térmico/metabolismo , Masculino , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas de Unión al ARN/metabolismo , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344 , Transducción de Señal/fisiologíaRESUMEN
PURPOSE: This study compared the effect of immediate versus delayed massage-like compressive loading (MLL) on peak isometric torque recovery and inflammatory cell infiltration after eccentric exercise (EEX). METHODS: Eighteen skeletally mature New Zealand White rabbits were instrumented with peroneal nerve cuffs for the stimulation of hindlimb tibialis anterior muscles. After a bout of EEX, rabbits were randomly assigned to an MLL protocol (0.5 Hz, 10 N, 15 min) that started immediately post-EEX, 48 h post-EXX, or no-MLL control and performed for four consecutive days. A torque-angle (T-Θ) relationship was obtained for 21 joint angles pre- and post-EEX and after four consecutive days of MLL or no-MLL. Muscle wet weights and immunohistochemical sections were obtained after final treatments. RESULTS: EEX produced an average 51% ± 13% decrease in peak isometric torque output. The greatest peak torque recovery occurred with the immediate application of MLL. There were differences in torque recovery between immediate and delayed MLL (P = 0.0012), immediate MLL and control (P < 0.0001), and delayed MLL and control (P = 0.025). Immunohistochemical analysis showed 39.3% and 366.0% differences in the number of RPN3/57 and CD11b-positive cells between immediate (P = 0.71) and delayed MLL (P = 0.12). The area under the T-Θ curve showed a difference for immediate (P < 0.0001) and delayed (P = 0.0051) MLL as compared with control. Exercise produced an average 10° ± 0.2° rightward shift from preexercise peak isometric torque angle. Control, immediate MLL, and delayed MLL produced an average leftward angular shift from the postexercise angle (P = 0.28, P = 0.03, and P = 0.47, respectively). CONCLUSION: Post-EEX, immediate MLL was more beneficial than delayed MLL in restoring muscle function and in modulating inflammatory cell infiltration. These findings invite similar human studies to make definitive conclusions on optimal timing of massage-based therapies.
Asunto(s)
Leucocitos/metabolismo , Masaje/métodos , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Fenómenos Biomecánicos , Femenino , Inmunohistoquímica , Inflamación/inmunología , Modelos Lineales , Músculo Esquelético/inmunología , Infiltración Neutrófila , Curva ROC , Conejos , Distribución Aleatoria , Recuperación de la Función , Torque , Soporte de PesoRESUMEN
Complete thoracic (T) spinal cord injury (SCI) above the T6 level typically results in autonomic dysreflexia, an abnormal hypertensive condition commonly triggered by nociceptive stimuli below the level of SCI. Overexpression of nerve growth factor in the lumbosacral spinal cord induces profuse sprouting of nociceptive pelvic visceral afferent fibers that correlates with increased hypertension in response to noxious colorectal distension. After complete T4 SCI, we evaluated the plasticity of propriospinal neurons conveying visceral input rostrally to thoracic sympathetic preganglionic neurons. The anterograde tracer biotinylated dextran amine (BDA) was injected into the lumbosacral dorsal gray commissure (DGC) of injured/nontransected rats immediately after injury (acute) or 2 weeks later (delayed). At 1 or 2 weeks after delayed or acute injections, respectively, a higher density (P < 0.05) of BDA(+) fibers was found in thoracic dorsal gray matter of injured vs. nontransected spinal cords. For corroboration, fast blue (FB) or cholera toxin subunit beta (CTb) was injected into the T9 dorsal horns 2 weeks postinjury/nontransection. After 1 week transport, more retrogradely labeled (P < 0.05) DGC propriospinal neurons (T13-S1) were quantified in injured vs. nontransected cords. We also monitored immediate early gene c-fos expression following colorectal distension and found increased (P < 0.01) c-Fos(+) cell numbers throughout the DGC after injury. Collectively, these results imply that, in conjunction with local primary afferent fiber plasticity, injury-induced sprouting of DGC neurons may be a key constituent in relaying visceral sensory input to sympathetic preganglionic neurons that elicit autonomic dysreflexia after high thoracic SCI.