RESUMEN
Objectives: With no clinically effective antiviral options available, infections and fatalities associated with dengue virus (DENV) have reached an alarming level worldwide. We have designed this study to evaluate the efficacy of the celecoxib derivative AR-12 against the in vitro replication of all four DENV serotypes. Methods: Each 24-well plate of Vero cells infected with all four DENV serotypes, singly, was subjected to treatments with various doses of AR-12. Following 48 h of incubation, inhibitory efficacies of AR-12 against the different DENV serotypes were evaluated by conducting a virus yield reduction assay whereby DENV RNA copy numbers present in the collected supernatant were quantified using qRT-PCR. The underlying mechanism(s) possibly involved in the compound's inhibitory activities were then investigated by performing molecular docking on several potential target human and DENV protein domains. Results: The qRT-PCR data demonstrated that DENV-3 was most potently inhibited by AR-12, followed by DENV-1, DENV-2 and DENV-4. Our molecular docking findings suggested that AR-12 possibly exerted its inhibitory effects by interfering with the chaperone activities of heat shock proteins. Conclusions: These results serve as vital information for the design of future studies involving in vitro mechanistic studies and animal models, aiming to decipher the potential of AR-12 as a potential therapeutic option for DENV infection.
Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Pirazoles/farmacología , Sulfonamidas/farmacología , Replicación Viral/efectos de los fármacos , Animales , Celecoxib/química , Chlorocebus aethiops , Dengue/tratamiento farmacológico , Dengue/virología , Descubrimiento de Drogas , Proteínas de Choque Térmico/metabolismo , Simulación del Acoplamiento Molecular , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Serogrupo , Células VeroRESUMEN
Chlamydia trachomatis is the leading causative agent of bacterial sexually transmitted infections worldwide which can lead to female pelvic inflammatory disease and infertility. A greater understanding of host response during chlamydial infection is essential to design intervention technique to reduce the increasing incidence rate of genital chlamydial infection. In this study, we investigated proteome changes in epithelial cells during C. trachomatis infection by using an isobaric tags for relative and absolute quantitation (iTRAQ) labeling technique coupled with a liquid chromatography-tandem mass spectrometry (LC-MS(3) ) analysis. C. trachomatis (serovar D, MOI 1)-infected HeLa-229 human cervical carcinoma epithelial cells (at 2, 4 and 8 h) showed profound modifications of proteome profile which involved 606 host proteins. MGST1, SUGP2 and ATXN10 were among the top in the list of the differentially upregulated protein. Through pathway analysis, we suggested the involvement of eukaryotic initiation factor 2 (eIF2) and mammalian target of rapamycin (mTOR) in host cells upon C. trachomatis infection. Network analysis underscored the participation of DNA repair mechanism during C. trachomatis infection. In summary, intense modifications of proteome profile in C. trachomatis-infected HeLa-229 cells indicate complex host-pathogen interactions at early phase of chlamydial infection.
Asunto(s)
Chlamydia trachomatis/crecimiento & desarrollo , Factor 2 Eucariótico de Iniciación/genética , Interacciones Huésped-Patógeno , Serina-Treonina Quinasas TOR/genética , Ataxina-10/genética , Ataxina-10/metabolismo , Chlamydia trachomatis/patogenicidad , Cromatografía Liquida , Factor 2 Eucariótico de Iniciación/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Redes y Vías Metabólicas/genética , Proteómica/métodos , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Transducción de Señal , Coloración y Etiquetado/métodos , Serina-Treonina Quinasas TOR/metabolismo , Espectrometría de Masas en Tándem , Factores de TiempoRESUMEN
BACKGROUND: The 7.5 kb cryptic plasmid of Chlamydia trachomatis has been shown to be a virulence factor in animal models, but its significance in humans still remains unknown. The aim of this study was to investigate the prevalence and potential involvement of the C. trachomatis cryptic plasmid in causing various clinical manifestations; including infertility, reproductive tract disintegrity, menstrual disorder, and polycystic ovarian syndrome (PCOS) among genital C. trachomatis-infected patients. RESULTS: A total of 180 female patients of child bearing age (mean 30.9 years old, IQR:27-35) with gynecological complications and subfertility issues, who visited Obstetrics and Gynecology clinics in Kuala Lumpur, Malaysia were recruited for the study. Prevalence of genital chlamydial infection among these patients was alarmingly high at 51.1% (92/180). Of the 92 chlamydia-infected patients, 93.5% (86/92) were infected with plasmid-bearing (+) C. trachomatis while the remaining 6.5% (6/92) were caused by the plasmid-free (-) variant. Our data showed that genital C. trachomatis infection was associated with infertility issues, inflammation in the reproductive tract (mucopurulent cervicitis or endometriosis), irregular menstrual cycles and polycystic ovarian syndrome (PCOS). However, no statistical significance was detected among patients with plasmid (+) versus plasmid (-) C. trachomatis infection. Interestingly, plasmid (+) C. trachomatis was detected in all patients with PCOS, and the plasmid copy numbers were significantly higher among PCOS patients, relative to non-PCOS patients. CONCLUSION: Our findings show a high incidence of C. trachomatis infection among women with infertility or gynecological problems in Malaysia. However, due to the low number of plasmid (-) C. trachomatis cases, a significant role of the plasmid in causing virulence in human requires further investigation of a larger cohort.
Asunto(s)
Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Chlamydia trachomatis/aislamiento & purificación , Plásmidos/genética , Adulto , Chlamydia trachomatis/clasificación , Chlamydia trachomatis/metabolismo , Estudios de Cohortes , Femenino , Ginecología/estadística & datos numéricos , Humanos , Malasia/epidemiología , Obstetricia/estadística & datos numéricos , Plásmidos/metabolismo , Embarazo , PrevalenciaRESUMEN
BACKGROUND: Dengue is a major public health problem in many tropical and sub-tropical countries. Vascular leakage and shock are identified as the major causes of deaths in patients with severe dengue. Studies have suggested the potential role of Fc gamma receptors I (FcγRI) in the pathogenesis of dengue. We hypothesized that the circulating level of Fcγ receptor I could potentially be used as an indicator in assisting early diagnosis of severe dengue. RESULTS: A selected cohort of 66 dengue patients including 42 dengue with signs of vascular leakage, and 24 dengue without signs of vascular leakage were identified and were afterwards referred to as 'cases' and 'controls' respectively. Thirty seven normal healthy controls were also recruited in this study. The circulating level of FcγRI was quantified from the serum using enzyme-link immunosorbent assay (ELISA). The levels of FcγRI in both groups of patients with and without vascular leakage were found to be significantly higher than the normal healthy controls (P < 0.001). However, there was no significant difference found between patients with vascular leakage and those without vascular leakage (p = 0.777). CONCLUSION: We suggest that FcγRI is not associated with the vascular leakage in dengue. However, further studies are necessary to delineate the role of FcγRI in antibody-dependent enhancement (ADE) mechanism.
Asunto(s)
Dengue/sangre , Dengue/diagnóstico , Inmunoglobulina G/sangre , Receptores de IgG/sangre , Lesiones del Sistema Vascular/sangre , Lesiones del Sistema Vascular/diagnóstico , Adolescente , Adulto , Biomarcadores/sangre , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
BACKGROUND: Tick-borne encephalitis virus (TBEV) and Crimean-Congo haemorrhagic fever virus (CCHFV) are important tick-borne viruses. Despite their wide geographical distribution and ease of acquisition, the prevalence of both viruses in Malaysia is still unknown. This study was conducted to determine the seroprevalence for TBEV and CCHFV among Malaysian farm workers as a high-risk group within the population. METHODS: We gave questionnaires to 209 farm workers and invited them to participate in the study. Eighty-five agreed to do so. We then collected and tested sera for the presence of anti-TBEV IgG (immunoglobulin G) and anti-CCHFV IgG using a commercial enzyme-linked immunosorbent assay (ELISA) kit. We also tested seroreactive samples against three other related flaviviruses: dengue virus (DENV), West Nile virus (WNV) and Japanese encephalitis virus (JEV) using the ELISA method. RESULTS: The preliminary results showed the presence of anti-TBEV IgG in 31 (36.5%) of 85 sera. However, when testing all the anti-TBEV IgG positive sera against the other three antigenically related flaviviruses to exclude possible cross reactivity, only five (4.2%) sera did not show any cross reactivity. Interestingly, most (70.97%) seropositives subjects mentioned tick-bite experience. However, there was no seroreactive sample for CCHFV. CONCLUSIONS: These viruses migrate to neighbouring countries so they should be considered threats for the future, despite the low seroprevalence for TBEV and no serological evidence for CCHFV in this study. Therefore, further investigation involving a large number of human, animal and tick samples that might reveal the viruses' true prevalence is highly recommended.
Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Agricultores , Virus de la Fiebre Hemorrágica de Crimea-Congo/inmunología , Adolescente , Adulto , Animales , Anticuerpos Antivirales/sangre , Virus del Dengue/inmunología , Virus de la Encefalitis Japonesa (Especie)/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Humanos , Inmunoglobulina G/sangre , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Estudios Seroepidemiológicos , Mordeduras de Garrapatas/epidemiología , Virus del Nilo Occidental/inmunologíaRESUMEN
Arboviruses are a significant threat to global public health, with outbreaks occurring worldwide. Toll-like receptors (TLRs) play a crucial role in the innate immune response against these viruses by recognizing pathogen-associated molecular patterns and initiating an inflammatory response. Significantly, TLRs commonly implicated in the immune response against viral infections include TLR2, TLR4, TLR6, TLR3, TLR7, and TLR8; limiting or allowing them to replicate and spread within the host. Modulating TLRs has emerged as a promising approach to combat arbovirus infections. This review summarizes recent advances in TLR modulation as a therapeutic target in arbovirus infections. Studies have shown that the activation of TLRs can enhance the immune response against arbovirus infections, leading to increased viral clearance and protection against disease. Conversely, inhibition of TLRs can reduce the excessive inflammation and tissue damage associated with arbovirus infection. Modulating TLRs represents a potential therapeutic strategy to combat arbovirus infections.
Asunto(s)
Infecciones por Arbovirus , Humanos , Brotes de Enfermedades , Inmunidad Innata , Inflamación , Receptores Toll-LikeRESUMEN
BACKGROUND: Mosquito-borne diseases pose a significant global public health threat, with Malaysia's Klang Valley experiencing numerous outbreaks in densely populated urban areas. METHODS: This study aimed to estimate the seroprevalence of anti-dengue and anti-chikungunya antibodies among urban refugees in the Klang Valley, Malaysia, and identify associated risk factors. RESULTS: High seroprevalence of anti-dengue immunoglobulin G (IgG) and IgM (60.0% [confidence interval {CI} 55.39 to 64.48] and 9.2% [CI 6.77 to 12.25], respectively) were observed among refugees >18 years of age (χ22=11.720, p=0.003), Kachin ethnicity (χ28=72.253, p<0.001), without formal education (χ21=3.856, p=0.050), homes near waste disposal sites (χ21=10.378, p=0.001) and refugees who have experienced flooding (χ21=5.460, p=0.019). Meanwhile, the overall seroprevalence of anti-chikungunya IgG and IgM was 9.7% (CI 7.15 to 12.73) and 10.8% (CI 8.09 to 13.93), respectively, with ages 12-18 years (χ22=6.075, p=0.048), Rohingya ethnicity (χ28=31.631, p<0.001) and homes close to waste disposal sites (χ21=3.912, p=0.048) being significant risk factors. Results showed a link to poor environmental living conditions, with an increase in the vector population with higher availability of breeding sites and thus exposure to dengue and chikungunya virus. CONCLUSIONS: Health education among the community is the key to disease prevention, as there are no specific antiviral drugs for treatment and limited vaccine availability.
Asunto(s)
Anticuerpos Antivirales , Fiebre Chikungunya , Virus Chikungunya , Virus del Dengue , Dengue , Inmunoglobulina G , Inmunoglobulina M , Refugiados , Humanos , Malasia/epidemiología , Estudios Seroepidemiológicos , Dengue/epidemiología , Dengue/inmunología , Dengue/sangre , Masculino , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/sangre , Fiebre Chikungunya/inmunología , Femenino , Adulto , Refugiados/estadística & datos numéricos , Adolescente , Niño , Virus Chikungunya/inmunología , Adulto Joven , Anticuerpos Antivirales/sangre , Inmunoglobulina M/sangre , Persona de Mediana Edad , Inmunoglobulina G/sangre , Virus del Dengue/inmunología , Factores de Riesgo , Preescolar , Población UrbanaRESUMEN
Background: The high burden of extended-spectrum beta-lactamase-producing (ESBL)-producing Enterobacterales worldwide, especially in the densely populated South East Asia poses a significant threat to the global transmission of antibiotic resistance. Molecular surveillance of ESBL-producing pathogens in this region is vital for understanding the local epidemiology, informing treatment choices, and addressing the regional and global implications of antibiotic resistance. Methods: Therefore, an inventory surveillance of the ESBL-Escherichia coli (ESBL-EC) isolates responsible for infections in Malaysian hospitals was conducted. Additionally, the in vitro efficacy of flomoxef and other established antibiotics against ESBL-EC was evaluated. Results: A total of 127 non-repetitive ESBL-EC strains isolated from clinical samples were collected during a multicentre study performed in five representative Malaysian hospitals. Of all the isolates, 33.9% were isolated from surgical site infections and 85.8% were hospital-acquired infections. High rates of resistance to cefotaxime (100%), cefepime (100%), aztreonam (100%) and trimethoprim-sulfamethoxazole (100%) were observed based on the broth microdilution test. Carbapenems remained the most effective antibiotics against the ESBL-EC, followed by flomoxef. Antibiotic resistance genes were identified by PCR. The blaCTX-M-1 was the most prevalent ESBL gene, with 28 isolates (22%) harbouring blaCTX-M-1 only, 27 isolates (21.3%) co-harbouring blaCTX-M-1 and blaTEM, and ten isolates (7.9%) co-harbouring blaCTX-M-1, blaTEM and blaSHV. A generalised linear model showed significant antibacterial activity of imipenem against different types of infection. Besides carbapenems, this study also demonstrated a satisfactory antibacterial activity of flomoxef (81.9%) on ESBL-EC, regardless of the types of ESBL genes.
Asunto(s)
Infecciones por Escherichia coli , Humanos , Antibacterianos/farmacología , beta-Lactamasas/genética , Carbapenémicos/farmacología , Escherichia coli/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Malasia/epidemiologíaRESUMEN
Aedes albopictus is one of the main mosquito vectors responsible for transmitting arboviruses to humans and animals. The ability of this mosquito to support virus transmission has been linked to vector competence, which is partly attributed to the genetic disparities in Ae. albopictus population. At present, little is known about the biologically important traits of Ae. albopictus in Malaysia. Thus, the study aims to determine the genetic variation of Ae. albopictus based on the mitochondria-encoded sequences of cytochrome oxidase subunit I (COI). A statistical parsimony network of 253 taxa aligned as 321 characters of the COI gene revealed 42 haplotypes (H1-H42), of which H1 was the most widespread haplotype in Peninsular Malaysia. Three highly divergent haplotypes (H21, H30, and H31) were detected from the northern population. Overall, haplotype and nucleotide diversities were 0.576 and 0.003, respectively, with low genetic differentiation (FST = 0.039) and high gene flow (Nm = 12.21) across all populations.
Asunto(s)
Aedes , Aedes/genética , Animales , Complejo IV de Transporte de Electrones/genética , Variación Genética , Malasia , Mitocondrias , Mosquitos Vectores/genéticaRESUMEN
n/a.
RESUMEN
BACKGROUND: Carbapenem resistant Enterobacteriaceae is a growing concern worldwide including Malaysia. The emergence of this pathogen is worrying because carbapenem is one of the 'last-line' antibiotics. The main objective of this study was to determine the prevalence of genetic mechanisms and clinical risk factors of carbapenem resistant Klebsiella pneumoniae (K. pneumoniae) in Malaysia. METHODS: In this study, seventeen carbapenem resistant K. pneumoniae strains isolated from a tertiary teaching hospital in 2013 were studied. Minimal inhibitory concentration (MIC) of the bacterial strains was determined and genes associated with carbapenemases and extended-spectrum-beta-lactamases (ESBLs) were sequenced and compared with the closest representatives published in public domains. All strains were also sub-typed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Statistical analyses were performed to determine the correlation between risk factors for acquiring carbapenem resistant K. pneumoniae and in-hospital mortality. RESULTS: The predominant carbapenemase was blaOXA-48, detected in 12 strains (70.59%). Other carbapenemases detected in this study were blaKPC-2, blaIMP-8, blaNMC-A and blaNDM-1. Nine different pulsotypes were identified and nine strains which were affiliated with ST101, the predominant sequence type had similar PFGE patterns (similarity index of 85%). Based on univariate statistical analysis, resistance to imipenem and usage of mechanical ventilation showed a statistically significant effect separately to in-hospital mortality. CONCLUSION: The diverse genetic mechanisms harbored by these carbapenem resistant K. pneumoniae facilitates its spread and complicates its detection. Thus, correlation between microbiological trends with host characteristics and clinical factors will provide a better insight of rational treatment strategies and pathogen control.
RESUMEN
BACKGROUND: The re-emerging, Aedes spp. transmitted Chikungunya virus (CHIKV) has recently caused large outbreaks in a wide geographical distribution of the world including countries in Europe and America. Though fatalities associated with this self-remitting disease were rarely reported, quality of patients' lives have been severely diminished by polyarthralgia recurrence. Neither effective antiviral treatment nor vaccines are available for CHIKV. Our previous in vitro screening showed that hesperetin, a bioflavonoid exhibits inhibitory effect on the virus intracellular replication. Here, we present a study using the computational approach to identify possible target proteins for future mechanistic studies of hesperetin. METHODS: 3D structures of CHIKV nsP2 (3TRK) and nsP3 (3GPG) were retrieved from Protein Data Bank (PDB), whereas nsP1, nsP4 and cellular factor SPK2 were modeled using Iterative Threading Assembly Refinement (I-TASSER) server based on respective amino acids sequence. We performed molecular docking on hesperetin against all four CHIKV non-structural proteins and SPK2. Proteins preparation and subsequent molecular docking were performed using Discovery Studio 2.5 and AutoDock Vina 1.5.6. The Lipinski's values of the ligand were computed and compared with the available data from PubChem. Two non-structural proteins with crystal structures 3GPG and 3TRK in complexed with hesperetin, demonstrated favorable free energy of binding from the docking study, were further explored using molecular dynamics (MD) simulations. RESULTS: We observed that hesperetin interacts with different types of proteins involving hydrogen bonds, pi-pi effects, pi-cation bonding and pi-sigma interactions with varying binding energies. Among all five tested proteins, our compound has the highest binding affinity with 3GPG at -8.5 kcal/mol. The ligand used in this study also matches the Lipinski's rule of five in addition to exhibiting closely similar properties with that of in PubChem. The docking simulation was performed to obtain a first guess of the binding structure of hesperetin complex and subsequently analysed by MD simulations to assess the reliability of the docking results. Root mean square deviation (RMSD) of the simulated systems from MD simulations indicated that the hesperetin complex remains stable within the simulation timescale. DISCUSSION: The ligand's tendencies of binding to the important proteins for CHIKV replication were consistent with our previous in vitro screening which showed its efficacy in blocking the virus intracellular replication. NsP3 serves as the highest potential target protein for the compound's inhibitory effect, while it is interesting to highlight the possibility of interrupting CHIKV replication via interaction with host cellular factor. By complying the Lipinski's rule of five, hesperetin exhibits drug-like properties which projects its potential as a therapeutic option for CHIKV infection.
RESUMEN
INTRODUCTION: Chlamydia trachomatis (Ct), is the leading cause of sexually transmitted infections worldwide. Host transcriptomic- or proteomic profiling studies have identified key molecules involved in establishment of Ct infection or the generation of anti Ct-immunity. However, the contribution of the host metabolome is not known. OBJECTIVES: The objective of this study was to determine the contribution of host metabolites in genital Ct infection. METHODS: We used high-performance liquid chromatography-mass spectrometry, and mapped lipid profiles in genital swabs obtained from female guinea pigs at days 3, 9, 15, 30 and 65 post Ct serovar D intravaginal infection. RESULTS: Across all time points assessed, 13 distinct lipid species including choline, ethanolamine and glycerol were detected. Amongst these metabolites, phosphatidylcholine (PC) was the predominant phospholipid detected from animals actively shedding bacteria i.e., at 3, 9, and 15 days post infection. However, at days 30 and 65 when the animals had cleared the infection, PC was observed to be decreased compared to previous time points. Mass spectrometry analyses of PC produced in guinea pigs (in vivo) and 104C1 guinea pig cell line (in vitro) revealed distinct PC species following Ct D infection. Amongst these, PC 16:0/18:1 was significantly upregulated following Ct D infection (p < 0.05, >twofold change) in vivo and in vitro infection models investigated in this report. Exogenous addition of PC 16:0/18:1 resulted in significant increase in Ct D in Hela 229 cells. CONCLUSION: This study demonstrates a role for host metabolite, PC 16:0/18:1 in regulating genital Ct infection in vivo and in vitro.
RESUMEN
This study focuses on the antiviral activity of selected flavonoids against the Chikungunya virus (CHIKV), a mosquito-transmitted virus that can cause incapacitating arthritis in infected individuals. Based on the results of screening on Vero cells, the tested compounds were evaluated further with various assays, including cytotoxicity assay, virus yield assay by quantitative reverse transcription polymerase chain reaction (qRT-PCR), virus RNA replication assay with a CHIKV replicon cell line, Western blotting, and quantitative immunofluorescence assay. Baicalein, fisetin, and quercetagetin displayed potent inhibition of CHIKV infection, with 50% inhibitory concentrations [IC50] of 1.891 µg/ml (6.997 µM), 8.444 µg/ml (29.5 µM), and 13.85 µg/ml (43.52 µM), respectively, and with minimal cytotoxicity. The time-of-addition studies and various antiviral assays demonstrated that baicalein and quercetagetin mainly inhibited CHIKV binding to the Vero cells and displayed potent activity against extracellular CHIKV particles. The qRT-PCR, immunofluorescence assay, and Western blot analyses indicated that each of these flavonoids affects CHIKV RNA production and viral protein expression. These data provide the first evidence of the intracellular anti-CHIKV activity of baicalein, fisetin, and quercetagetin.
Asunto(s)
Antivirales/farmacología , Virus Chikungunya/efectos de los fármacos , Flavonoides/farmacología , Animales , Antivirales/química , Productos Biológicos/farmacología , Línea Celular , Virus Chikungunya/genética , Cricetinae , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Flavonoides/química , Genotipo , Concentración 50 Inhibidora , Células Vero , Replicación Viral/efectos de los fármacosRESUMEN
The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection.
Asunto(s)
Antivirales/farmacología , Virus Chikungunya/efectos de los fármacos , ARN Viral/antagonistas & inhibidores , Silimarina/farmacología , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Virus Chikungunya/genética , Virus Chikungunya/crecimiento & desarrollo , Chlorocebus aethiops , Cricetulus , Relación Dosis-Respuesta a Droga , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Células Epiteliales/virología , Quempferoles/farmacología , Quercetina/farmacología , ARN Viral/genética , Silibina , Células Vero , Carga Viral/efectos de los fármacosRESUMEN
Bioprospecting of plant-based insecticides for vector control has become an area of interest within the last two decades. Due to drawbacks of chemical insecticides, phytochemicals of plant origin with mosquito control potential are being utilized as alternative sources in integrated vector control. In this regard, the present study aimed to investigate oviposition deterring and oviciding potentials of Ipomoea cairica (L.) (Family: Convolvulaceae) crude leaf extract against dengue vectors, Aedes aegypti and Aedes albopictus. Ipomoea cairica is an indigenous plant that has demonstrated marked toxicity towards larvae of Ae. aegypti and Ae. albopictus. Leaves of I. cairica were extracted using Soxhlet apparatus with acetone as solvent. Oviposition deterrent activity and ovicidal assay was carried out in oviposition site choice tests with three different concentrations (50, 100, 450 ppm). Acetone extract of I. cairica leaf strongly inhibited oviposition with 100% repellence to Ae. aegypti at lower concentration of 100 ppm, while for Ae. albopictus was at 450 ppm. The oviposition activity index (OAI) values which ranged from -0.69 to -1.00 revealed that I. cairica demonstrated deterrent effect. In ovicidal assay, similar trend was observed whereby zero hatchability was recorded for Ae. aegypti and Ae. albopictus eggs at 100 and 450 ppm, respectively. It is noteworthy that I. cairica leaf extract had significantly elicited dual properties as oviposition deterrent and oviciding agent in both Aedes species. Reduction in egg number through oviposition deterring activity, reduction in hatching percentage and survival rates, suggested an additional hallmark of this plant to be integrated in Aedes mosquito control. Ipomoea cairica deserved to be considered as one of the potential alternative sources for the new development of novel plant based insecticides in future.
Asunto(s)
Aedes/efectos de los fármacos , Repelentes de Insectos/farmacología , Insectos Vectores , Insecticidas/farmacología , Ipomoea/química , Oviposición/efectos de los fármacos , Extractos Vegetales/farmacología , Aedes/fisiología , Animales , Bioensayo , Femenino , Repelentes de Insectos/aislamiento & purificación , Insecticidas/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Análisis de SupervivenciaRESUMEN
Dengue fever is a mosquito-borne viral disease estimated to cause about 230 million infections worldwide every year, of which 25,000 are fatal. Global incidence has risen rapidly in recent decades with some 3.6 billion people, over half of the world's population, now at risk, mainly in urban centres of the tropics and subtropics. Demographic and societal changes, in particular urbanization, globalization, and increased international travel, are major contributors to the rise in incidence and geographic expansion of dengue infections. Major research gaps continue to hamper the control of dengue. The European Commission launched a call under the 7th Framework Programme with the title of 'Comprehensive control of Dengue fever under changing climatic conditions'. Fourteen partners from several countries in Europe, Asia, and South America formed a consortium named 'DengueTools' to respond to the call to achieve better diagnosis, surveillance, prevention, and predictive models and improve our understanding of the spread of dengue to previously uninfected regions (including Europe) in the context of globalization and climate change.The consortium comprises 12 work packages to address a set of research questions in three areas:Research area 1: Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring.Research area 2: Develop novel strategies to prevent dengue in children.Research area 3: Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vectorial capacity, global mobility, and climate change.In this paper, we report on the rationale and specific study objectives of 'DengueTools'. DengueTools is funded under the Health theme of the Seventh Framework Programme of the European Community, Grant Agreement Number: 282589 Dengue Tools.
Asunto(s)
Dengue/prevención & control , Difusión de Innovaciones , Brotes de Enfermedades/prevención & control , Vigilancia de la Población/métodos , Práctica de Salud Pública , Dengue/diagnóstico , Dengue/epidemiología , Promoción de la Salud/métodos , Humanos , Incidencia , Cooperación Internacional , Medición de RiesgoRESUMEN
Dendritic cells (DC) are the main producers of the cytokine IL-12p70, through which they play a direct role in the development of IFN-gamma-secreting Th1 cells, costimulation of CTL differentiation and NK-cell activation. In contrast, IL-10, which is also produced by DC, negatively regulates IL-12 production. IL-12p70 production varies widely between individuals, and several polymorphisms in the gene encoding IL-12p40 (IL12B) have been identified that influence susceptibility and severity of infectious, autoimmune and neoplastic disease. Here we show that polymorphisms not only of IL12B, but also in the IL10 promoter, influence IL-12p70 secretion by monocyte-derived DC in response to LPS. Although IL12B promoter homozygotes were prone to making more IL-12p70, presence of the IL10 high genotype restricted IL-12p70 production in these individuals. These observations provide a further genetic control of IL-12p70 regulation and emphasize the complexity of production of this cytokine. They also suggest genotypes that might influence the outcome of DC immunotherapy.