Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Pathol ; 194(5): 693-707, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38309428

RESUMEN

Glucose lowering independently reduces liver fibrosis in human nonalcoholic fatty liver disease. This study investigated the impact of diabetes on steatohepatitis and established a novel mouse model for diabetic steatohepatitis. Male C57BL/6J mice were fed a 60% high-fat diet (HFD) and injected with carbon tetrachloride (CCl4) and streptozotocin (STZ) to induce diabetes. The HFD+CCl4+STZ group showed more severe liver steatosis, hepatocyte ballooning, and regenerative nodules compared with other groups. Diabetes up-regulated inflammatory cytokine-associated genes and increased the M1/M2 macrophage ratios in the liver. Single-cell RNA sequencing analysis of nonparenchymal cells in the liver showed that diabetes reduced Kupffer cells and increased bone marrow-derived recruited inflammatory macrophages, such as Ly6Chi-RM. Diabetes globally reduced liver sinusoidal endothelial cells (LSECs). Furthermore, genes related to the receptor for advanced glycation end products (RAGE)/Toll-like receptor 4 (TLR4) were up-regulated in Ly6Chi-RM and LSECs in mice with diabetes, suggesting a possible role of RAGE/TLR4 signaling in the interaction between inflammatory macrophages and LSECs. This study established a novel diabetic steatohepatitis model using a combination of HFD, CCl4, and STZ. Diabetes exacerbated steatosis, hepatocyte ballooning, fibrosis, regenerative nodule formation, and the macrophage M1/M2 ratios triggered by HFD and CCl4. Single-cell RNA sequencing analysis indicated that diabetes activated inflammatory macrophages and impairs LSECs through the RAGE/TLR4 signaling pathway. These findings open avenues for discovering novel therapeutic targets for diabetic steatohepatitis.


Asunto(s)
Diabetes Mellitus , Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Humanos , Animales , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Células Endoteliales/metabolismo , Transcriptoma , Ratones Endogámicos C57BL , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Cirrosis Hepática/patología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Dieta Alta en Grasa/efectos adversos
2.
Am J Physiol Endocrinol Metab ; 324(6): E542-E552, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36947851

RESUMEN

The quality of skeletal muscle is maintained by a balance between protein biosynthesis and degradation. Disruption in this balance results in sarcopenia. However, its underlying mechanisms remain underinvestigated. Selenoprotein P (SeP; encoded by Selenop in mice) is a hepatokine that is upregulated in type 2 diabetes and aging and causes signal resistances via reductive stress. We created immobilized muscle atrophy model in Selenop knockout (KO) mice. Immobilization (IMM) significantly reduced cross-sectional areas and the size of skeletal muscle fibers, which were ameliorated in KO mice. IMM upregulated the genes encoding E3 ubiquitin ligases and their upstream FoxO1, FoxO3, and KLF15 transcription factors in the skeletal muscle, which were suppressed in KO mice. These findings suggest a possible involvement of SeP-mediated reductive stress in physical inactivity-mediated sarcopenia, which may be a therapeutic target against sarcopenia.NEW & NOTEWORTHY Selenoprotein P (SeP) is a hepatokine that is upregulated in type 2 diabetes and aging and causes signal resistances via reductive stress. Immobilization (IMM) significantly reduced skeletal muscle mass in mice, which was prevented in SeP knockout (KO) mice. IMM-induced Foxos/KLF15-atrogene upregulation was suppressed in the skeletal muscle of KO mice. These findings suggest that SeP-mediated reductive stress is involved in and may be a therapeutic target for physical inactivity-mediated muscle atrophy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sarcopenia , Ratones , Animales , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Selenoproteína P/genética , Selenoproteína P/metabolismo , Sarcopenia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Motivos Tripartitos
3.
J Pharmacol Exp Ther ; 385(1): 5-16, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36328485

RESUMEN

Ubiquitin-proteasome dysfunction contributes to obesity-related metabolic disorders, such as diabetes and fatty liver disease. However, the regulation of ubiquitin-proteasome activity by insulin remains to be elucidated. Here, we show that prolonged insulin stimulation activates proteasome function even though it reduces the ubiquitinated proteins in H4IIEC3 hepatocytes. Looking for a pathway by which insulin inhibits ubiquitination, we found that hepatic expression of ubiquitin-specific protease 14 (USP14) was upregulated in the liver of patients with insulin resistance. Indeed, the USP14-specific inhibitor IU1 canceled the insulin-mediated reduction of ubiquitinated proteins. Furthermore, insulin-induced endoplasmic reticulum (ER) stress, which was canceled by IU1, suggesting that USP14 activity is involved in insulin-induced ER stress. Co-stimulation with insulin and IU1 for 2 hours upregulated the nuclear translocation of the lipogenic transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), upregulated the expression of the lipogenic gene, fatty acid synthase (Fasn), and repressed the gluconeogenic genes. In conclusion, insulin activates proteasome function even though it inhibits protein ubiquitination by activating USP14 in hepatocytes. USP14 activation by insulin inhibits mature SREBP-1c while upregulating ER stress and the expression of genes involved in gluconeogenesis. Further understanding mechanisms underlying the USP14 activation and its pleiotropic effects may lead to therapeutic development for obesity-associated metabolic disorders, such as diabetes and fatty liver disease. SIGNIFICANCE STATEMENT: This study shows that insulin stimulation inhibits ubiquitination by activating USP14, independent of its effect on proteasome activity in hepatocytes. USP14 also downregulates the nuclear translocation of the lipogenic transcription factor SREBP-1c and upregulates the expression of genes involved in gluconeogenesis. Since USP14 is upregulated in the liver of insulin-resistant patients, understanding mechanisms underlying the USP14 activation and its pleiotropic effects will help develop treatments for metabolic disorders such as diabetes and fatty liver.


Asunto(s)
Hepatocitos , Enfermedad del Hígado Graso no Alcohólico , Complejo de la Endopetidasa Proteasomal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Insulina/farmacología , Insulina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Obesidad/genética , Obesidad/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Proteínas Ubiquitinadas/farmacología , Ubiquitinación , Ubiquitinas/genética , Ubiquitinas/metabolismo , Ubiquitinas/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-35499234

RESUMEN

Selenoprotein P (SeP; encoded by SELENOP in humans, Selenop in rodents) is a hepatokine that is upregulated in the liver of humans with type 2 diabetes. Excess SeP contributes to the onset of insulin resistance and various type 2 diabetes-related complications. We have previously reported that the long-chain saturated fatty acid, palmitic acid, upregulates Selenop expression, whereas the polyunsaturated fatty acids (PUFAs) downregulate it in hepatocytes. However, the effect of medium-chain fatty acids (MCFAs) on Selenop is unknown. Here we report novel mechanisms that underlie the lauric acid-mediated Selenop gene regulation in hepatocytes. Lauric acid upregulated Selenop expression in Hepa1-6 hepatocytes and mice liver. A luciferase promoter assay and computational analysis of transcription factor-binding sites identified the hepatic nuclear factor 4α (HNF4α) binding site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay showed that lauric acid increased the binding of HNF4α to the SELENOP promoter. The knockdown of Hnf4α using siRNA canceled the upregulation of lauric acid-induced Selenop. Thus, the lauric acid-induced impairment of Akt phosphorylation brought about by insulin was rescued by the knockdown of either Hnf4α or Selenop. These results provide new insights into the regulation of SeP by fatty acids and suggest that SeP may mediate MCFA-induced hepatic insulin signal reduction.

5.
Endocr J ; 69(8): 907-918, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35321982

RESUMEN

Selenoprotein P is upregulated in type 2 diabetes, causing insulin and exercise resistance. We have previously reported that eicosapentaenoic acid (EPA) negatively regulates Selenop expression by suppressing Srebf1 in H4IIEC3 hepatocytes. However, EPA downregulated Srebf1 long before downregulating Selenop. Here, we report additional novel mechanisms for the Selenop gene regulation by EPA. EPA upregulated Foxo1 mRNA expression, which was canceled with the ERK1/2 inhibitor, but not with the PKA inhibitor. Foxo1 knockdown by siRNA initiated early suppression of Selenop, but not Srebf1, by EPA. However, EPA did not affect the nuclear translocation of the FoxO1 protein. Neither ERK1/2 nor PKA inhibitor affected FoxO1 nuclear translocation. In summary, FoxO1 knockdown accelerates the EPA-mediated Selenop downregulation independent of SREBP-1c in hepatocytes. EPA upregulates Foxo1 mRNA via the ERK1/2 pathway without altering its protein and nuclear translocation. These findings suggest redundant and conflicting transcriptional networks in the lipid-induced redox regulation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ácido Eicosapentaenoico , Regulación hacia Abajo , Proteína Forkhead Box O1 , Hepatocitos , Humanos , Insulina , ARN Mensajero , Selenoproteína P , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Esteroles
6.
Endocrinology ; 164(6)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37103220

RESUMEN

Muscle atrophy is the cause and consequence of obesity. Proteasome dysfunction mediates obesity-induced endoplasmic reticulum (ER) stress and insulin resistance in the liver and adipose tissues. However, obesity-associated regulation of proteasome function and its role in the skeletal muscles remains underinvestigated. Here, we established skeletal muscle-specific 20S proteasome assembly chaperone-1 (PAC1) knockout (mPAC1KO) mice. A high-fat diet (HFD) activated proteasome function by ∼8-fold in the skeletal muscles, which was reduced by 50% in mPAC1KO mice. mPAC1KO induced unfolded protein responses in the skeletal muscles, which were reduced by HFD. Although the skeletal muscle mass and functions were not different between the genotypes, genes involved in the ubiquitin proteasome complex, immune response, endoplasmic stress, and myogenesis were coordinately upregulated in the skeletal muscles of mPAC1KO mice. Therefore, we introduced an immobilization-induced muscle atrophy model in obesity by combining HFD and immobilization. mPAC1KO downregulated atrogin-1 and MuRF1, together with their upstream Foxo1 and Klf15, and protected against disused skeletal muscle mass reduction. In conclusion, obesity elevates proteasome functions in the skeletal muscles. PAC1 deficiency protects mice from immobilization-induced muscle atrophy in obesity. These findings suggest obesity-induced proteasome activation as a possible therapeutic target for immobilization-induced muscle atrophy.


Asunto(s)
Atrofia Muscular , Complejo de la Endopetidasa Proteasomal , Ratones , Masculino , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratones Obesos , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA