Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Membranes (Basel) ; 12(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35448351

RESUMEN

Rapid population growth and urbanization are two main drivers for the over-abstraction of conventional freshwater resources in various parts of the world, which leads to the situation of water scarcity (per capita availability <1000 m3/year). Predictions based on the World Bank projected population data and the FAO AQUASTAT database for freshwater availability show that by 2050, 2 billion people living in 44 countries will likely suffer from water scarcity, of which 95% may live in developing countries. Among these, the countries that will likely be most strongly hit by water scarcity by 2050 are Uganda, Burundi, Nigeria, Somalia, Malawi, Eritrea, Ethiopia, Haiti, Tanzania, Niger, Zimbabwe, Afghanistan, Sudan, and Pakistan. Currently, these countries have not yet established desalination to meet their freshwater demand. However, the current global trend shows that membrane-based desalination technology is finding new outlets for supplying water to meet growing water demand in most of the water-scarce countries. These 14 water-scarce countries will demand an additional desalination capacity of 54 Mm3/day by 2050 in order to meet the standard of current municipal water demand and to compensate for the withdrawal of renewable resources. Case studies from India, China, and South Africa have highlighted that other countries may apply the strategy of using desalinated water for industrial users. Moreover, challenges to the widespread adoption of desalination exist such as expense, significant energy use, the need for specialized staff training, the large carbon footprint of facilities, environmental issues such as greenhouse gas emission (GHGs), chemical discharge, and operational problems such as membrane fouling.

2.
Membranes (Basel) ; 11(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673528

RESUMEN

In this study, the removal of particulate, organic and biological fouling potential was investigated in the two-stage dual media filtration (DMF) pretreatment of a full-scale seawater reverse osmosis (SWRO) desalination plant. Moreover, the removal of fouling potential in two-stage DMF (DMF pretreatment) was compared with the removal in two-stage DMF installed after dissolved air floatation (DAF) (DAF-DMF pretreatment). For this purpose, the silt density index (SDI), modified fouling index (MFI), bacterial growth potential (BGP), organic fractions and microbial adenosine triphosphate (ATP) were monitored in the pretreatment processes of two full-scale SWRO plants. Particulate fouling potential was well controlled through the two stages of DMF with significant removal of SDI15 (>80%), MFI0.45 (94%) and microbial ATP (>95%). However, lower removal of biological/organic fouling potential (24-41%) was observed due to frequent chlorination (weekly) of the pretreatment, resulting in low biological activity in the DMFs. Therefore, neutralizing chlorine before media filtration is advised, rather than after, as is the current practice in many full-scale SWRO plants. Comparing overall removal in the DAF-DMF pretreatment to that of the DMF pretreatment showed that DAF improved the removal of biological/organic fouling potential, in which the removal of BGP and biopolymers increased by 40% and 16%, respectively. Overall, monitoring ATP and BGP during the pretreatment processes, particularly in DMF, would be beneficial to enhance biological degradation and lower biofouling potential in SWRO feed water.

3.
Membranes (Basel) ; 10(11)2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233394

RESUMEN

Several potential growth methods have been developed to monitor biological/organic fouling potential in seawater reverse osmosis (SWRO), but to date the correlation between these methods and biofouling of SWRO has not been demonstrated. In this research, the relation between a new adenosine triphosphate (ATP)-based bacterial growth potential (BGP) test of SWRO feed water and SWRO membrane performance is investigated. For this purpose, the pre-treatment of a full-scale SWRO plant including dissolved air flotation (DAF) and two stage dual media filtration (DMF) was monitored for 5 months using BGP, orthophosphate, organic fractions by liquid chromatography coupled with organic carbon detection (LC-OCD), silt density index (SDI), and modified fouling index (MFI). Results showed that particulate fouling potential was well controlled through the SWRO pre-treatment as the measured SDI and MFI in the SWRO feed water were below the recommended values. DAF in combination with coagulation (1-5 mg-Fe3+/L) consistently achieved 70% removal of orthophosphate, 50% removal of BGP, 25% removal of biopolymers, and 10% removal of humic substances. Higher BGP (100-950 µg-C/L) in the SWRO feed water corresponded to a higher normalized pressure drop in the SWRO, suggesting the applicability of using BGP as a biofouling indicator in SWRO systems. However, to validate this conclusion, more SWRO plants with different pre-treatment systems need to be monitored for longer periods of time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA