Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819362

RESUMEN

The ability of a ligand to preferentially promote engagement of one signaling pathway over another downstream of GPCR activation has been referred to as signaling bias, functional selectivity, and biased agonism. The presentation of ligand bias reflects selectivity between active states of the receptor, which may result in the display of preferential engagement with one signaling pathway over another. In this study, we provide evidence that the G protein-biased mu opioid receptor (MOR) agonists SR-17018 and SR-14968 stabilize the MOR in a wash-resistant yet antagonist-reversible G protein-signaling state. Furthermore, we demonstrate that these structurally related biased agonists are noncompetitive for radiolabeled MOR antagonist binding, and while they stimulate G protein signaling in mouse brains, partial agonists of this class do not compete with full agonist activation. Importantly, opioid antagonists can readily reverse their effects in vivo. Given that chronic treatment with SR-17018 does not lead to tolerance in several mouse pain models, this feature may be desirable for the development of long-lasting opioid analgesics that remain sensitive to antagonist reversal of respiratory suppression.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal/efectos de los fármacos , Analgésicos Opioides/farmacología , Animales , Bencimidazoles/farmacología , Proteínas de Unión al GTP/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas de Narcóticos/farmacología , Piperidinas/farmacología , Receptores Acoplados a Proteínas G/fisiología , Receptores Opioides mu/agonistas , Receptores Opioides mu/fisiología , Transducción de Señal/fisiología , Arrestina beta 2/metabolismo
2.
Biomolecules ; 13(6)2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37371516

RESUMEN

Opioid analgesics such as morphine and fentanyl induce mu-opioid receptor (MOR)-mediated hyperactivity in mice. Herein, we show that morphine, fentanyl, SR-17018, and oliceridine have submaximal intrinsic efficacy in the mouse striatum using 35S-GTPγS binding assays. While all of the agonists act as partial agonists for stimulating G protein coupling in striatum, morphine, fentanyl, and oliceridine are fully efficacious in stimulating locomotor activity; meanwhile, the noncompetitive biased agonists SR-17018 and SR-15099 produce submaximal hyperactivity. Moreover, the combination of SR-17018 and morphine attenuates hyperactivity while antinociceptive efficacy is increased. The combination of oliceridine with morphine increases hyperactivity, which is maintained over time. These findings provide evidence that noncompetitive agonists at MOR can be used to suppress morphine-induced hyperactivity while enhancing antinociceptive efficacy; moreover, they demonstrate that intrinsic efficacy measured at the receptor level is not directly proportional to drug efficacy in the locomotor activity assay.


Asunto(s)
Morfina , Compuestos de Espiro , Ratones , Animales , Morfina/farmacología , Analgésicos Opioides/farmacología , Fentanilo/farmacología
3.
Neuropharmacology ; 185: 108439, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33345829

RESUMEN

The mu opioid receptor-selective agonist, SR-17018, preferentially activates GTPγS binding over ßarrestin2 recruitment in cellular assays, thereby demonstrating signaling bias. In mice, SR-17018 stimulates GTPγS binding in brainstem and produces antinociception with potencies similar to morphine. However, it produces much less respiratory suppression and mice do not develop antinociceptive tolerance in the hot plate assay upon repeated dosing. Herein we evaluate the effects of acute and repeated dosing of SR-17018, oxycodone and morphine in additional models of pain-related behaviors. In the mouse warm water tail immersion assay, an assessment of spinal reflex to thermal nociception, repeated administration of SR-17018 produces tolerance as does morphine and oxycodone. SR-17018 retains efficacy in a formalin-induced inflammatory pain model upon repeated dosing, while oxycodone does not. In a chemotherapeutic-induced neuropathy pain model SR-17018 is more potent and efficacious than morphine or oxycodone, moreover, this efficacy is retained upon repeated dosing of SR-17018. These findings demonstrate that, with the exception of the tail flick test, SR-17018 retains efficacy upon chronic treatment across several pain models.


Asunto(s)
Analgésicos Opioides/administración & dosificación , Bencimidazoles/administración & dosificación , Morfina/administración & dosificación , Neuralgia/tratamiento farmacológico , Oxicodona/administración & dosificación , Piperidinas/administración & dosificación , Receptores Opioides mu/agonistas , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Femenino , Bombas de Infusión Implantables , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Neuralgia/patología , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Resultado del Tratamiento
4.
Biol Psychiatry ; 87(1): 15-21, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31806082

RESUMEN

The mu opioid receptor (MOR) is a diversely regulated target for the alleviation of pain in the clinical setting. However, untoward side effects such as tolerance, dependence, respiratory suppression, constipation, and abuse liability detract from the general activation of these receptors. Studies in genetically modified rodent models suggest that activating G protein signaling pathways while avoiding phosphorylation of the receptor or recruitment of ß-arrestin scaffolding proteins could preserve the analgesic properties of MOR agonists while avoiding certain side effects. With the development of novel MOR "biased" agonists, which lead to preferential activation of G protein pathways over receptor phosphorylation, internalization, or interaction with other effectors, this hypothesis can be tested in a native, physiological setting. Overall, it is clear that the MOR is not a simple on-off switch and that the diverse means by which the receptor can be regulated may present an opportunity to refine therapeutics for the treatment of pain.


Asunto(s)
Analgésicos Opioides , Receptores Opioides mu , Analgésicos/farmacología , Analgésicos Opioides/farmacología , Tolerancia a Medicamentos , Receptores Opioides mu/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo
5.
Neuropsychopharmacology ; 45(2): 416-425, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31443104

RESUMEN

It has been demonstrated that opioid agonists that preferentially act at µ-opioid receptors to activate G protein signaling over ßarrestin2 recruitment produce antinociception with less respiratory suppression. However, most of the adverse effects associated with opioid therapeutics are realized after extended dosing. Therefore, we tested the onset of tolerance and dependence, and assessed for neurochemical changes associated with prolonged treatment with the biased agonist SR-17018. When chronically administered to mice, SR-17018 does not lead to hot plate antinociceptive tolerance, receptor desensitization in periaqueductal gray, nor a super-sensitization of adenylyl cyclase in the striatum, which are hallmarks of opioid neuronal adaptations that are seen with morphine. Interestingly, substitution with SR-17018 in morphine-tolerant mice restores morphine potency and efficacy, whereas the onset of opioid withdrawal is prevented. This is in contrast to buprenorphine, which can suppress withdrawal, but produces and maintains morphine antinociceptive tolerance. Biased agonists of this nature may therefore be useful for the treatment of opioid dependence while restoring opioid antinociceptive sensitivity.


Asunto(s)
Analgésicos Opioides/metabolismo , Tolerancia a Medicamentos/fisiología , Dependencia de Morfina/metabolismo , Morfina/metabolismo , Receptores Opioides mu/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Analgésicos Opioides/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Femenino , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Bombas de Infusión Implantables , Masculino , Ratones , Ratones Endogámicos C57BL , Morfina/administración & dosificación , Oxicodona/administración & dosificación , Oxicodona/metabolismo , Dimensión del Dolor/efectos de los fármacos , Dimensión del Dolor/métodos , Receptores Opioides mu/agonistas , Síndrome de Abstinencia a Sustancias/prevención & control
6.
Cannabis Cannabinoid Res ; 4(2): 88-101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31236475

RESUMEN

Background and Objectives: The cannabinoid receptor 2 (CB2) was previously implicated in brain functions, including complex behaviors. Here, we assessed the role of CB2 in selected swimming behaviors in zebrafish larvae and developed an in vivo upscalable whole-organism approach for CB2 ligand screening. Experimental Approach: Using CRISPR-Cas9 technology, we generated a novel null allele (cnr2upr1 ) and a stable homozygote-viable loss-of-function (CB2-KO) line. We measured in untreated wild-type and cnr2upr1/upr1 larvae, photo-dependent (swimming) responses (PDR) and center occupancy (CO) to establish quantifiable anxiety-like parameters. Next, we measured PDR alteration and CO variation while exposing wild-type and mutant animals to an anxiolytic drug (valproic acid [VPA]) or to an anxiogenic drug (pentylenetetrazol [PTZ]). Finally, we treated wild-type and mutant larvae with two CB2-specific agonists (JWH-133 and HU-308) and two CB2-specific antagonists, inverse agonists (AM-630 and SR-144528). Results: Untreated CB2-KO showed a different PDR than wild-type larvae as well as a decreased CO. VPA treatments diminished swimming activity in all animals but to a lesser extend in mutants. CO was strongly diminished and even more in mutants. PTZ-induced inverted PDR was significantly stronger in light and weaker in dark periods and the CO lower in PTZ-treated mutants. Finally, two of four tested CB2 ligands had a detectable activity in the assay. Conclusions: We showed that larvae lacking CB2 behave differently in complex behaviors that can be assimilated to anxiety-like behaviors. Mutant larvae responded differently to VPA and PTZ treatments, providing in vivo evidence of CB2 modulating complex behaviors. We also established an upscalable combined genetic/behavioral approach in a whole organism that could be further developed for high-throughput drug discovery platforms.

7.
Methods Cell Biol ; 132: 25-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26928537

RESUMEN

Total internal reflection fluorescence (TIRF) microscopy allows probing the cellular events occurring close and at the plasma membrane. Over the last decade, we have seen a significant increase in the number of publications applying TIRF microscopy to unravel some of the fundamental biological questions regarding G protein-coupled receptors (GPCRs) function such as the mechanisms controlling receptor trafficking, quaternary structure, and signaling among others. Most of the published work has been performed in heterologous systems such as HEK293 and CHO cells, where the imaging surface available is higher and smoother when compared with the narrow processes or the smaller cell bodies of neurons. However, some publications have expanded our understanding of these events to primary cell cultures, mostly rat hippocampal and striatal neuronal cultures. Results from these cells provide a bona fide model of the complex events controlling GPCR function in living cells. We believe more work needs to be performed in primary cultures and eventually in intact tissue to complement the knowledge obtained from heterologous cell models. Here, we described a step-by-step protocol to investigate the surface trafficking and signaling from GPCRs in rat hippocampal and striatal primary cultures.


Asunto(s)
Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células Cultivadas , Microscopía Fluorescente , Cultivo Primario de Células , Transporte de Proteínas , Ratas Sprague-Dawley , Análisis de la Célula Individual
8.
Front Cell Neurosci ; 8: 363, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25404895

RESUMEN

Transmembrane proteins are continuously shuttled from the endosomal compartment to the neuronal plasma membrane by highly regulated and complex trafficking steps. These events are involved in many homeostatic and physiological processes such as neuronal growth, signaling, learning and memory among others. We have previously shown that endosomal exocytosis of the B2 adrenergic receptor (B2AR) and the GluR1-containing AMPA receptor to the neuronal plasma membrane is mediated by two different types of vesicular fusion. A rapid type of exocytosis in which receptors are delivered to the plasma membrane in a single kinetic step, and a persistent mode in which receptors remain clustered at the insertion site for a variable period of time before delivery to the cell surface. Here, by comparing the exocytosis of multiple receptors in dissociated hippocampal and striatal cultures, we show that persistent events are a general mechanism of vesicular delivery. Persistent events were only observed after 10 days in vitro, and their frequency increased with use of the calcium ionophore A23187 and with depolarization induced by KCl. Finally, we determined that vesicles producing persistent events remain at the plasma membrane, closing and reopening their fusion pore for a consecutive release of cargo in a mechanism reminiscent of synaptic kiss-and-run. These results indicate that the delivery of transmembrane receptors to the cell surface can be dynamically regulated by kiss-and-run exocytosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA