Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Cell Neurosci ; 110: 103585, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33358996

RESUMEN

Olfactory GPCRs (ORs) in mammalian olfactory receptor neurons (ORNs) mediate excitation through the Gαs family member Gαolf. Here we tentatively associate a second G protein, Gαo, with inhibitory signaling in mammalian olfactory transduction by first showing that odor evoked phosphoinositide 3-kinase (PI3K)-dependent inhibition of signal transduction is absent in the native ORNs of mice carrying a conditional OMP-Cre based knockout of Gαo. We then identify an OR from native rat ORNs that are activated by octanol through cyclic nucleotide signaling and inhibited by citral in a PI3K-dependent manner. We show that the OR activates cyclic nucleotide signaling and PI3K signaling in a manner that reflects its functionality in native ORNs. Our findings lay the groundwork to explore the interesting possibility that ORs can interact with two different G proteins in a functionally identified, ligand-dependent manner to mediate opponent signaling in mature mammalian ORNs.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Animales , Células Cultivadas , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
2.
BMC Genomics ; 21(1): 649, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32962631

RESUMEN

BACKGROUND: Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS: The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS: Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Palinuridae/genética , Transcriptoma , Animales , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Palinuridae/metabolismo , RNA-Seq , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Análisis de la Célula Individual , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
3.
Chem Senses ; 45(7): 503-508, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32598441

RESUMEN

There is increasing appreciation that G-protein-coupled receptors (GPCRs) can initiate diverse cellular responses by activating multiple G proteins, arrestins, and other biochemical effectors. Structurally different ligands targeting the same receptor are thought to stabilize the receptor in multiple distinct active conformations such that specific subsets of signaling effectors are engaged at the exclusion of others, creating a bias toward a particular outcome, which has been referred to as ligand-induced selective signaling, biased agonism, ligand-directed signaling, and functional selectivity, among others. The potential involvement of functional selectivity in mammalian olfactory signal transduction has received little attention, notwithstanding the fact that mammalian olfactory receptors comprise the largest family of mammalian GPCRs. This position review considers the possibility that, although such complexity in G-protein function may have been lost in the specialization of olfactory receptors to serve as sensory receptors, the ability of olfactory receptor neurons (ORNs) to function as signal integrators and growing appreciation that this functionality is widespread in the receptor population suggest otherwise. We pose that functional selectivity driving 2 opponent inputs have the potential to generate an output that reflects the balance of ligand-dependent signaling, the direction of which could be either suppressive or synergistic and, as such, needs to be considered as a mechanistic basis for signal integration in mammalian ORNs.


Asunto(s)
Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Animales , Ligandos , Fosfatidilinositoles/metabolismo , Receptores Odorantes/agonistas , Receptores Odorantes/antagonistas & inhibidores , Transducción de Señal
4.
Chem Senses ; 44(8): 583-592, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31420672

RESUMEN

Published evidence suggests that inherent rhythmically active or "bursting" primary olfactory receptor neurons (bORNs) in crustaceans have the previously undescribed functional property of encoding olfactory information by having their rhythmicity entrained by the odor stimulus. In order to determine whether such bORN-based encoding is a fundamental feature of olfaction that extends beyond crustaceans, we patch-clamped bORN-like ORNs in mice, characterized their dynamic properties, and show they align with the dynamic properties of lobster bORNs. We then characterized bORN-like activity by imaging the olfactory epithelium of OMP-GCaMP6f mice. Next, we showed rhythmic activity is not dependent upon the endogenous OR by patching ORNs in OR/GFP mice. Lastly, we showed the properties of bORN-like ORNs characterized in mice generalize to rats. Our findings suggest encoding odor time should be viewed as a fundamental feature of olfaction with the potential to be used to navigate odor plumes in animals as diverse as crustaceans and mammals.


Asunto(s)
Calcio/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Odorantes/análisis , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Animales , Calcio/análisis , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Imagen Molecular , Nephropidae , Mucosa Olfatoria/citología , Mucosa Olfatoria/fisiología , Neuronas Receptoras Olfatorias/citología , Técnicas de Placa-Clamp , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley
5.
PLoS Comput Biol ; 12(1): e1004682, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26730727

RESUMEN

Accurately encoding time is one of the fundamental challenges faced by the nervous system in mediating behavior. We recently reported that some animals have a specialized population of rhythmically active neurons in their olfactory organs with the potential to peripherally encode temporal information about odor encounters. If these neurons do indeed encode the timing of odor arrivals, it should be possible to demonstrate that this capacity has some functional significance. Here we show how this sensory input can profoundly influence an animal's ability to locate the source of odor cues in realistic turbulent environments-a common task faced by species that rely on olfactory cues for navigation. Using detailed data from a turbulent plume created in the laboratory, we reconstruct the spatiotemporal behavior of a real odor field. We use recurrence theory to show that information about position relative to the source of the odor plume is embedded in the timing between odor pulses. Then, using a parameterized computational model, we show how an animal can use populations of rhythmically active neurons to capture and encode this temporal information in real time, and use it to efficiently navigate to an odor source. Our results demonstrate that the capacity to accurately encode temporal information about sensory cues may be crucial for efficient olfactory navigation. More generally, our results suggest a mechanism for extracting and encoding temporal information from the sensory environment that could have broad utility for neural information processing.


Asunto(s)
Conducta Apetitiva/fisiología , Modelos Neurológicos , Odorantes/análisis , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Animales , Biología Computacional
6.
J Neurosci ; 34(3): 941-52, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24431452

RESUMEN

The spatial and temporal characteristics of the visual and acoustic sensory input are indispensable attributes for animals to perform scene analysis. In contrast, research in olfaction has focused almost exclusively on how the nervous system analyzes the quality and quantity of the sensory signal and largely ignored the spatiotemporal dimension especially in longer time scales. Yet, detailed analyses of the turbulent, intermittent structure of water- and air-borne odor plumes strongly suggest that spatio-temporal information in longer time scales can provide major cues for olfactory scene analysis for animals. We show that a bursting subset of primary olfactory receptor neurons (bORNs) in lobster has the unexpected capacity to encode the temporal properties of intermittent odor signals. Each bORN is tuned to a specific range of stimulus intervals, and collectively bORNs can instantaneously encode a wide spectrum of intermittencies. Our theory argues for the existence of a novel peripheral mechanism for encoding the temporal pattern of odor that potentially serves as a neural substrate for olfactory scene analysis.


Asunto(s)
Odorantes , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/fisiología , Olfato/fisiología , Animales , Femenino , Masculino , Nephropidae , Especificidad por Sustrato
7.
Chem Senses ; 38(3): 221-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23292750

RESUMEN

Insect odorant receptors (ORs) function as heteromeric odorant-gated ion channels consisting of a conserved coreceptor, Orco, and an odorant-sensitive tuning subunit. Although some OR modulators have been identified, an extended library of pharmacological tools is currently lacking and would aid in furthering our understanding of insect OR complexes. We now demonstrate that amiloride and several derivatives, which have been extensively used as blockers for various ion channels and transporters, also block odorant-gated currents from 2 OR complexes from the malaria vector mosquito Anopheles gambiae. In addition, both heteromeric and homomeric ORs were susceptible to amiloride blockade when activated by VUAA1, an agonist that targets the Orco channel subunit. Amiloride derivatives therefore represent a valuable class of channel blockers that can be used to investigate the pharmacological and biophysical properties of insect OR function.


Asunto(s)
Amilorida/análogos & derivados , Anopheles/efectos de los fármacos , Proteínas de Insectos/efectos de los fármacos , Receptores Odorantes/antagonistas & inhibidores , Amilorida/farmacología , Animales , Anopheles/metabolismo , Línea Celular , Células HEK293 , Humanos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Técnicas de Placa-Clamp , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Tioglicolatos/farmacología , Transfección , Triazoles/farmacología
8.
J Neurosci ; 31(1): 273-80, 2011 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-21209212

RESUMEN

Phosphoinositide signaling, in particular, phosphoinositide 3-kinase (PI3K) signaling, has been implicated in mediating inhibitory odorant input to mammalian olfactory receptor neurons (ORNs). To better understand this phenomenon we investigated PI3K-dependent inhibition between single odorant pairs. The concentration-dependent inhibition of the response of native rat ORNs to octanol by citral is PI3K dependent; blocking PI3K activity with the ß and γ isoform-specific inhibitors AS252424 (5-[5-(4-fluoro-2-hydroxy-phenyl)-furan-2-ylmethylene]-thiazolidine-2,4-dione) and TGX221(7-methyl-2-(4-morpholinyl)-9-[1-(phenylamino)ethyl]-4H-pyrido [1,2-a]pyrimidin-4-one) eliminated or strongly reduced the inhibition. Interestingly, blocking PI3K also changed the apparent agonist strength of the otherwise noncompetitive antagonist citral. The excitation evoked by citral after blocking PI3K, could be suppressed by the adenylate cyclase III (ACIII) blockers MDL12330A (cis-N-(2-phenylcyclopentyl)-azacyclotridec-1-en-2-amine hydrochloride) and SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine], indicating that citral could also activate ACIII, presumably through the canonical olfactory receptor (OR). The G-protein G(ß)γ subunit blockers suramin (8,8'-[carbonylbis[imino-3,1-phenylen ecarbonylimino(4-methyl-3,1-phenylene)carbonylimino]]bis-1,3,5-naphthalenetrisulfonic acid), gallein (3',4',5',6'-tetrahydroxyspiro[isobenzofuran-1(3H),9'-(9H)xanthen]-3-one), and M119 (cyclohexanecarboxylic acid [2-(4,5,6-trihydroxy-3-oxo-3H-xanthen-9-yl)-(9CI)]) suppressed citral's inhibition of the response to octanol, indicating that the activation of PI3K by citral was G-protein dependent, consistent with the idea that inhibition acts via the canonical OR. Lilial similarly antagonized the response to isoamyl acetate in other ORNs, indicating the effect generalizes to at least one other odorant pair. The ability of methyl-isoeugenol, limonene, α-pinene, isovaleric acid, and isosafrole to inhibit the response of other ORNs to IBMX (3-isobutyl-1-methylxanthine)/forskolin in a PI3K-dependent manner argues the effect generalizes to yet other structurally dissimilar odorants. Our findings collectively raise the interesting possibility that the OR serves as a molecular logic gate when mammalian ORNs are activated by natural, complex mixtures containing both excitatory and inhibitory odorants.


Asunto(s)
Neuronas Receptoras Olfatorias/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal/fisiología , Monoterpenos Acíclicos , Animales , Calcio/metabolismo , Ciclohexanos/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Modelos Biológicos , Monoterpenos/farmacología , Odorantes , Mucosa Olfatoria/citología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Suramina/farmacología , Xantenos/farmacología
9.
Sci Rep ; 11(1): 9278, 2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33927269

RESUMEN

Functional characterization of mammalian olfactory receptors (ORs) remains a major challenge to ultimately understanding the olfactory code. Here, we compare the responses of the mouse Olfr73 ectopically expressed in olfactory sensory neurons using AAV gene delivery in vivo and expressed in vitro in cell culture. The response dynamics and concentration-dependence of agonists for the ectopically expressed Olfr73 were similar to those reported for the endogenous Olfr73, however the antagonism previously reported between its cognate agonist and several antagonists was not replicated in vivo. Expressing the OR in vitro reproduced the antagonism reported for short odor pulses, but not for prolonged odor exposure. Our findings suggest that both the cellular environment and the stimulus dynamics shape the functionality of Olfr73 and argue that characterizing ORs in 'native' conditions, rather than in vitro, provides a more relevant understanding of ligand-OR interactions.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Odorantes/análisis , Mucosa Olfatoria/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Animales , Calcio/metabolismo , AMP Cíclico , Dependovirus/genética , Femenino , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/agonistas , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/genética , Mucosa Olfatoria/efectos de los fármacos , Neuronas Receptoras Olfatorias/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores Odorantes/agonistas , Receptores Odorantes/antagonistas & inhibidores , Receptores Odorantes/genética
10.
J Neurophysiol ; 103(2): 1114-22, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20032232

RESUMEN

Odorants inhibit as well as excite olfactory receptor neurons (ORNs) in many species of animals. Cyclic nucleotide-dependent activation of canonical mammalian ORNs is well established but it is still unclear how odorants inhibit these cells. Here we further implicate phosphoinositide-3-kinase (PI3K), an indispensable element of PI signaling in many cellular processes, in olfactory transduction in rodent ORNs. We show that odorants rapidly and transiently activate PI3K in the olfactory cilia and in the olfactory epithelium in vitro. We implicate known G-protein-coupled isoforms of PI3K and show that they modulate not only the magnitude but also the onset kinetics of the electrophysiological response of ORNs to complex odorants. Finally, we show that the ability of a single odorant to inhibit another can be PI3K dependent. Our collective results provide compelling support for the idea that PI3K-dependent signaling mediates inhibitory odorant input to mammalian ORNs and at least in part contributes to the mixture suppression typically seen in the response of ORNs to complex natural odorants.


Asunto(s)
Odorantes , Neuronas Receptoras Olfatorias/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Ratas , Ratas Sprague-Dawley
11.
J Neurochem ; 113(2): 341-50, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20132480

RESUMEN

In vertebrates and some invertebrates, odorant molecules bind to G protein-coupled receptors on olfactory receptor neurons (ORNs) to initiate signal transduction. Phosphoinositide 3-kinase (PI3K) activity has been implicated physiologically in olfactory signal transduction, suggesting a potential role for a G protein-coupled receptor-activated class I PI3K. Using isoform-specific antibodies, we identified a protein in the olfactory signal transduction compartment of lobster ORNs that is antigenically similar to mammalian PI3Kgamma and cloned a gene for a PI3K with amino acid homology with PI3Kbeta. The lobster olfactory PI3K co-immunoprecipitates with the G protein alpha and beta subunits, and an odorant-evoked increase in phosphatidylinositol (3,4,5)-trisphosphate can be detected in the signal transduction compartment of the ORNs. PI3Kgamma and beta isoform-specific inhibitors reduce the odorant-evoked output of lobster ORNs in vivo. Collectively, these findings provide evidence that PI3K is indeed activated by odorant receptors in lobster ORNs and further support the potential involvement of G protein activated PI3K signaling in olfactory transduction.


Asunto(s)
Bulbo Olfatorio/citología , Neuronas Receptoras Olfatorias/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Inmunoprecipitación/métodos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Odorantes , Neuronas Receptoras Olfatorias/efectos de los fármacos , Palinuridae/anatomía & histología , Técnicas de Placa-Clamp/métodos , Transducción de Señal/efectos de los fármacos
12.
Chem Senses ; 35(4): 301-8, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20190008

RESUMEN

Phosphatidylinositol 3-kinase (PI3K)-dependent signaling couples to receptors for many different ligands in diverse cellular systems. Recent findings suggest that PI3K-dependent signaling also mediates inhibition of odorant responses in rat olfactory receptor neurons (ORNs). Here, we present evidence that murine ORNs show PI3K-dependent calcium responses to odorant stimulation, they express 2 G protein-coupled receptor (GPCR)-activated isoforms of PI3K, PI3Kbeta and PI3Kgamma, and they exhibit odorant-induced PI3K activity. These findings support our use of a transgenic mouse model to begin to investigate the mechanisms underlying PI3K-mediated inhibition of odorant responses in mammalian ORNs. Mice deficient in PI3Kgamma, a class IB PI3K that is activated via GPCRs, lack detectable odorant-induced PI3K activity in their olfactory epithelium and their ORNs are less sensitive to PI3K inhibition. We conclude that odorant-dependent PI3K signaling generalizes to the murine olfactory system and that PI3Kgamma plays a role in mediating inhibition of odorant responses in mammalian ORNs.


Asunto(s)
Neuronas Receptoras Olfatorias/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Calcio/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Odorantes , Neuronas Receptoras Olfatorias/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Transducción de Señal
13.
J Exp Biol ; 213(Pt 9): 1417-24, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20400625

RESUMEN

Transient receptor potential (TRP) channels often play a role in sensory transduction, including chemosensory transduction. TRP channels, a common downstream target of phosphoinositide (PI) signaling, can be modulated by exogenous phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] and/or diacylglycerol (DAG). Lobster olfactory receptor neurons (ORNs) express a TRP-related, non-selective, calcium/magnesium-permeable, sodium/calcium-gated cation (SGC) channel. Here we report that PIs regulate the function of the calcium-activated form of the lobster channel. Sequestering of endogenous PI(4,5)P2, either with an anti-PI(4,5)P2 antibody or by electrostatic screening with polyvalent cations, blocks the channel. Exogenous PI(3,4,5)P3 activates the channel independently of intracellular sodium and/or calcium. Exogenous non-hydrolysable DAG analogs fail to change the gating parameters of the channel, suggesting the channel is insensitive to DAG. Electrophysiological recording from lobster ORNs in situ using a panel of pharmacological tools targeting the key components of both PI and DAG metabolism (phospholipase C, phosphoinositide 4-kinase and DAG kinase) extend these findings to the intact ORN. PI(4,5)P2 depletion suppresses both the odorant-evoked discharge and whole-cell current of the cells, and does so possibly independently of DAG production. Collectively, our results argue that PIs can regulate output in lobster ORNs, at least in part through their action on the lobster SGC channel.


Asunto(s)
Neuronas Receptoras Olfatorias/metabolismo , Palinuridae/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animales , Calcio/metabolismo , Activación del Canal Iónico , Canales de Sodio/metabolismo
14.
Sci Rep ; 10(1): 7961, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409665

RESUMEN

In aquatic and terrestrial environments, odorants are dispersed by currents that create concentration distributions that are spatially and temporally complex. Animals navigating in a plume must therefore rely upon intermittent, and time-varying information to find the source. Navigation has typically been studied as a spatial information problem, with the aim of movement towards higher mean concentrations. However, this spatial information alone, without information of the temporal dynamics of the plume, is insufficient to explain the accuracy and speed of many animals tracking odors. Recent studies have identified a subpopulation of olfactory receptor neurons (ORNs) that consist of intrinsically rhythmically active 'bursting' ORNs (bORNs) in the lobster, Panulirus argus. As a population, bORNs provide a neural mechanism dedicated to encoding the time between odor encounters. Using a numerical simulation of a large-scale plume, the lobster is used as a framework to construct a computer model to examine the utility of intermittency for orienting within a plume. Results show that plume intermittency is reliably detectable when sampling simulated odorants on the order of seconds, and provides the most information when animals search along the plume edge. Both the temporal and spatial variation in intermittency is predictably structured on scales relevant for a searching animal that encodes olfactory information utilizing bORNs, and therefore is suitable and useful as a navigational cue.


Asunto(s)
Organismos Acuáticos , Odorantes/análisis , Palinuridae , Análisis Espacio-Temporal , Algoritmos , Animales , Simulación por Computador
15.
Neuron ; 48(3): 417-30, 2005 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16269360

RESUMEN

Olfaction is a vitally important sense for all animals. There are striking similarities between species in the organization of the olfactory pathway, from the nature of the odorant receptor proteins, to perireceptor processes, to the organization of the olfactory CNS, through odor-guided behavior and memory. These common features span a phylogenetically broad array of animals, implying that there is an optimal solution to the problem of detecting and discriminating odors.


Asunto(s)
Evolución Biológica , Vías Olfatorias/fisiología , Olfato/fisiología , Animales , Células Quimiorreceptoras/fisiología , Humanos , Modelos Biológicos , Red Nerviosa/fisiología , Vías Olfatorias/citología , Neuronas Receptoras Olfatorias/fisiología , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
16.
Neuron ; 33(5): 731-9, 2002 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-11879650

RESUMEN

Phosphatidylinositol 3-kinase (PI3K)-dependent phosphoinositide signaling has been implicated in diverse cellular systems coupled to receptors for many different ligands, but the extent to which it functions in sensory transduction is yet to be determined. We now report that blocking PI3K activity increases odorant-evoked, cyclic nucleotide-dependent elevation of [Ca(2+)](i) in acutely dissociated rat olfactory receptor neurons and does so in an odorant-specific manner. These findings imply that 3-phosphoinositide signaling acts in vertebrate olfactory transduction to inhibit cyclic nucleotide-dependent excitation of the cells and that the interaction of the two signaling pathways is important in odorant coding, indicating that 3-phosphoinositide signaling can play a role in sensory transduction.


Asunto(s)
Señalización del Calcio/fisiología , Nucleótidos Cíclicos/metabolismo , Neuronas Receptoras Olfatorias/metabolismo , Fosfatidilinositoles/metabolismo , Adaptación Fisiológica/fisiología , Androstadienos/farmacología , Animales , Calcio/metabolismo , Células Cultivadas , Cromonas/farmacología , Electrofisiología/métodos , Inhibidores Enzimáticos/farmacología , Estrenos/farmacología , Morfolinas/farmacología , Odorantes , Neuronas Receptoras Olfatorias/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Pirrolidinonas/farmacología , Ratas , Ratas Wistar , Olfato/fisiología , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo , Wortmanina
17.
Physiol Genomics ; 25(2): 224-33, 2006 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-16614458

RESUMEN

The lobster olfactory organ is an important model for investigating many aspects of the olfactory system. To facilitate study of the molecular basis of olfaction in lobsters, we made a subtracted cDNA library from the mature zone of the olfactory organ of Homarus americanus, the American lobster. Sequencing of the 5'-end of 5,184 cDNA clones produced 2,389 distinct high-quality sequences consisting of 1,944 singlets and 445 contigs. Matches to known sequences corresponded with the types of cells present in the olfactory organ, including specific markers of olfactory sensory neurons, auxiliary cells, secretory cells of the aesthetasc tegumental gland, and epithelial cells. The wealth of neuronal mRNAs represented among the sequences reflected the preponderance of neurons in the tissue. The sequences identified candidate genes responsible for known functions and suggested new functions not previously recognized in the olfactory organ. A cDNA microarray was designed and tested by assessing mRNA abundance differences between two of the lobster's major chemosensory structures: the mature zone of the olfactory organ and the dactyl of the walking legs, a taste organ. The 115 differences detected again emphasized the abundance of neurons in the olfactory organ, especially a cluster of mRNAs encoding cytoskeletal-associated proteins and cell adhesion molecules such as 14-3-3zeta, actins, tubulins, trophinin, Fax, Yel077cp, suppressor of profilin 2, and gelsolin.


Asunto(s)
Expresión Génica , Nephropidae/metabolismo , Vías Olfatorias/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Perfilación de la Expresión Génica , Biblioteca de Genes , Nephropidae/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , ARN Mensajero/metabolismo , Papilas Gustativas/metabolismo
18.
Front Cell Neurosci ; 10: 97, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27147969

RESUMEN

Odorants inhibit as well as excite primary olfactory receptor neurons (ORNs) in many animal species. Growing evidence suggests that inhibition of mammalian ORNs is mediated by phosphoinositide (PI) signaling through activation of phosphoinositide 3-kinase (PI3K), and that canonical adenylyl cyclase III signaling and PI3K signaling interact to provide the basis for ligand-induced selective signaling. As PI3K is known to act in concert with phospholipase C (PLC) in some cellular systems, the question arises as to whether they work together to mediate inhibitory transduction in mammalian ORNs. The present study is designed to test this hypothesis. While we establish that multiple PLC isoforms are expressed in the transduction zone of rat ORNs, that odorants can activate PLC in ORNs in situ, and that pharmacological blockade of PLC enhances the excitatory response to an odorant mixture in some ORNs in conjunction with PI3K blockade, we find that by itself PLC does not account for an inhibitory response. We conclude that PLC does not make a measurable independent contribution to odor-evoked inhibition, and that PI3K is the primary mediator of PI-dependent inhibition in mammalian ORNs.

19.
Trends Neurosci ; 39(10): 649-655, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27594700

RESUMEN

Behavioral evidence from phylogenetically diverse animals and from humans suggests that, by extracting temporal information inherent in the olfactory signal, olfaction is more involved in interpreting space and time than heretofore imagined. If this is the case, the olfactory system must have neural mechanisms capable of encoding time at intervals relevant to the turbulent odor world in which many animals live. Here, we review evidence that animals can use populations of rhythmically active or 'bursting' olfactory receptor neurons (bORNs) to extract and encode temporal information inherent in natural olfactory signals. We postulate that bORNs represent an unsuspected neural mechanism through which time can be accurately measured, and that 'smelling time' completes the requirements for true olfactory scene analysis.


Asunto(s)
Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/metabolismo , Periodicidad , Olfato/fisiología , Animales , Humanos , Odorantes , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA