Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Cancer Res ; 14(11): 3268-77, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18519752

RESUMEN

PURPOSE: The purpose of this study was to characterize the activity of the Bcl-2 protein family inhibitor ABT-263 in a panel of small cell lung cancer (SCLC) xenograft models. EXPERIMENTAL DESIGN: A panel of 11 SCLC xenograft models was established to evaluate the efficacy of ABT-263. Single agent activity was examined on a continuous dosing schedule in each of these models. The H146 model was used to further evaluate dose and schedule, comparison to standard cytotoxic agents, and induction of apoptosis. RESULTS: ABT-263 exhibited a range of antitumor activity, leading to complete tumor regression in several models. Significant regressions of tumors as large as 1 cc were also observed. The efficacy of ABT-263 was also quite durable; in several cases, minimal tumor regrowth was noted several weeks after the cessation of treatment. Antitumor effects were equal or superior to that of several clinically approved cytotoxic agents. Regression of large established tumors was observed through several cycles of therapy and efficacy was retained in a Pgp-1 overexpressing line. Significant efficacy was observed on several dose and therapeutic schedules and was associated with significant induction of apoptosis. CONCLUSIONS: ABT-263 is a potent, orally bioavailable inhibitor of Bcl-2 family proteins that has recently entered clinical trials. The efficacy data reported here suggest that SCLC is a promising area of clinical investigation with this agent.


Asunto(s)
Compuestos de Anilina/administración & dosificación , Antineoplásicos/administración & dosificación , Carcinoma de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Sulfonamidas/administración & dosificación , Animales , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Desnudos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Mol Cancer Ther ; 7(10): 3265-74, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18852130

RESUMEN

ABT-263 is a potent, orally bioavailable inhibitor of the antiapoptotic Bcl-2 family members Bcl-2, Bcl-x(L), and Bcl-w, which is currently in phase I clinical trials. Previous work has shown that this compound has low nanomolar cell-killing activity in a variety of lymphoma and leukemia cell lines, many of which overexpress Bcl-2 through a variety of mechanisms. Rapamycin is a macrolide antibiotic that inhibits the mammalian target of rapamycin complex, leading to cell cycle arrest and inhibition of protein translation. Rapamycin (and its analogues) has shown activity in a variety of tumor cell lines primarily through induction of cell cycle arrest. Activity has also been shown clinically in mantle cell lymphoma and advanced renal cell carcinoma. Here, we show that treatment of the follicular lymphoma lines DoHH-2 and SuDHL-4 with 100 nmol/L rapamycin induces substantial G(0)-G(1) arrest. Addition of as little as 39 nmol/L ABT-263 to the rapamycin regimen induced a 3-fold increase in sub-G(0) cells. Combination of these agents also led to a significant increase in Annexin V staining over ABT-263 alone. In xenograft models of these tumors, rapamycin induced a largely cytostatic response in the DoHH-2 and SuDHL-4 models. Coadministration with ABT-263 induced significant tumor regression, with DoHH-2 and SuDHL-4 tumors showing 100% overall response rates. Apoptosis in these tumors was significantly enhanced by combination therapy as measured by staining with an antibody specific for cleaved caspase-3. These data suggest that combination of ABT-263 and rapamycin or its analogues represents a promising therapeutic strategy for the treatment of lymphoma.


Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Linfoma de Células B Grandes Difuso/patología , Sirolimus/farmacología , Sulfonamidas/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Inmunohistoquímica , Linfoma de Células B Grandes Difuso/terapia , Ratones , Ratones SCID , Inducción de Remisión , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Oncogene ; 21(2): 198-206, 2002 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-11803463

RESUMEN

AKT1/protein kinase Balpha is a protein-serine/threonine kinase that regulates multiple targets involved in cell survival and cell cycle progression in a variety of cell types including breast cancer cells. To explore the role of Akt1 in mammary gland function and tumorigenesis, transgenic mice were generated that express human AKT1 under the control of the MMTV promoter. Virgin transgenic mice did not exhibit a dominant phenotype, but upon cessation of lactation, a notable delay in involution occurred compared to age-matched non-transgenic mice. The delay in involution coincided with increased hyperplasia as evidenced by an increased number of binucleated epithelial cells and a marked elevation in cyclin D1 expression in mammary epithelium. The delayed involution phenotype corresponded to increased phosphorylation of Thr308 in AKT1 and Ser136 in BAD, but not phosphorylation of Ser21 in GSK-3alpha. There was no evidence of mammary dysplasia or neoplasia during the lifespan of multiparous transgenic mice. These data suggest that AKT1 is involved in cell survival in the lactating and involuting mammary gland, but that overexpression of AKT1 alone is insufficient to induce transformation.


Asunto(s)
Proteínas de Arabidopsis , Glándulas Mamarias Animales/patología , Virus del Tumor Mamario del Ratón/genética , Proteínas de Plantas/genética , Canales de Potasio/genética , Animales , Femenino , Lactancia , Hígado/metabolismo , Ratones , Ratones Transgénicos , Fosforilación , Reacción en Cadena de la Polimerasa , Valores de Referencia
4.
Pharmacol Res Perspect ; 3(5): e00178, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26516589

RESUMEN

The Bcl-2 family inhibitors venetoclax and navitoclax demonstrated potent antitumor activity in chronic lymphocytic leukemia patients, notably in reducing marrow load and adenopathy. Subsequent trials with venetoclax have been initiated in non-Hodgkin's lymphoma and multiple myeloma patients. Traditional preclinical models fall short either in faithfully recapitulating disease progression within such compartments or in allowing the direct longitudinal analysis of systemic disease. We show that intravenous inoculation of engineered RS4;11 (acute lymphoblastic leukemia) and Granta 519 (mantle cell lymphoma) bioluminescent reporter cell lines result in tumor engraftment of bone marrow, with additional invasion of the central nervous system in the case of Granta 519. Importantly, apoptosis induction and response of these systemically engrafted tumors to Bcl-2 family inhibitors alone or in combination with standard-of-care agents could be monitored longitudinally with optical imaging, and was more accurately reflective of the observed clinical response.

5.
Nat Med ; 19(2): 202-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23291630

RESUMEN

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has shown clinical efficacy in some BCL-2-dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-X(L) inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2-selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2-dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2-dependent hematological cancers.


Asunto(s)
Antineoplásicos/farmacología , Plaquetas/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Neoplasias Hematológicas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Sulfonamidas/farmacología , Compuestos de Anilina/farmacología , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Perros , Femenino , Células HeLa , Humanos , Ratones , Ratones SCID , Proteínas Proto-Oncogénicas c-bcl-2/química , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X/antagonistas & inhibidores
6.
Mol Cancer Ther ; 10(12): 2340-9, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21914853

RESUMEN

The ability of a cancer cell to avoid apoptosis is crucial to tumorigenesis and can also contribute to chemoresistance. The Bcl-2 family of prosurvival proteins (Bcl-2, Bcl-X(L), Bcl-w, Mcl-1, and A1) plays a key role in these processes. We previously reported the discovery of ABT-263 (navitoclax), a potent small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-w. While navitoclax exhibits single-agent activity in tumors dependent on Bcl-2 or Bcl-X(L) for survival, the expression of Mcl-1 has been shown to confer resistance to navitoclax, most notably in solid tumors. Thus, therapeutic agents that can downregulate or neutralize Mcl-1 are predicted to synergize potently with navitoclax. Here, we report the activity of navitoclax in combination with 19 clinically relevant agents across a panel of 46 human solid tumor cell lines. Navitoclax broadly enhanced the activity of multiple therapeutic agents in vitro and enhanced efficacy of both docetaxel and erlotinib in xenograft models. The ability of navitoclax to synergize with docetaxel or erlotinib corresponded to an altered sensitivity of the mitochondria toward navitoclax, which was associated with the downmodulation of Mcl-1 and/or upregulation of Bim. These data provide a rationale to interrogate these combinations clinically.


Asunto(s)
Compuestos de Anilina/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias/tratamiento farmacológico , Sulfonamidas/farmacología , Compuestos de Anilina/administración & dosificación , Animales , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Sinergismo Farmacológico , Femenino , Células HCT116 , Células Hep G2 , Humanos , Células K562 , Masculino , Ratones , Neoplasias/patología , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Sulfonamidas/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X/antagonistas & inhibidores
7.
Cancer Chemother Pharmacol ; 66(5): 869-80, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20099064

RESUMEN

PURPOSE: This study was designed to test the ability of the Bcl-2 family inhibitor ABT-263 to potentiate commonly used chemotherapeutic agents and regimens in hematologic tumor models. METHODS: Models of B-cell lymphoma and multiple myeloma were tested in vitro and in vivo with ABT-263 in combination with standard chemotherapeutic regimens, including VAP, CHOP and R-CHOP, as well as single cytotoxic agents including etoposide, rituximab, bortezomib and cyclophosphamide. Alterations in Bcl-2 family member expression patterns were analyzed to define mechanisms of potentiation. RESULTS: ABT-263 was additive with etoposide, vincristine and VAP in vitro in the diffuse large B-cell lymphoma line (DLBCL) DoHH-2, while rituximab potentiated its activity in SuDHL-4. Bortezomib strongly synergized with ABT-263 in the mantle cell lymphoma line Granta 519. Treatment of DoHH-2 with etoposide was associated with an increase in Puma expression, while bortezomib upregulated Noxa expression in Granta 519. Combination of ABT-263 with cytotoxic agents demonstrated superior tumor growth inhibition and delay in multiple models versus cytotoxic therapy alone, along with significant improvements in tumor response rates. CONCLUSIONS: Inhibition of the Bcl-2 family of proteins by ABT-263 enhances the cytotoxicity of multiple chemotherapeutics in hematologic tumors and represents a promising addition to the therapeutic arsenal for treatment of these diseases.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Linfoma de Células B/tratamiento farmacológico , Mieloma Múltiple/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Compuestos de Anilina/administración & dosificación , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Linfoma de Células B/patología , Ratones , Ratones SCID , Mieloma Múltiple/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sulfonamidas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA