Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 412, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496757

RESUMEN

BACKGROUND: Fusarium oxysporum f. sp. lycopersici (Fol) is a compendium of pathogenic and non-pathogenic fungal strains. Pathogenic strains may cause vascular wilt disease and produce considerable losses in commercial tomato plots. To gain insight into the molecular mechanisms mediating resistance to Fol in tomato, the aim of our study was to characterize the transcriptional response of three cultivars (CT1, CT2 and IAC391) to a pathogenic (Fol-pt) and a non-pathogenic (Fo-npt) strain of Fo. RESULTS: All cultivars exhibited differentially expressed genes in response to each strain of the fungus at 36 h post-inoculation. For the pathogenic strain, CT1 deployed an apparent active defense response that included upregulation of WRKY transcription factors, an extracellular chitinase, and terpenoid-related genes, among others. In IAC391, differentially expressed genes included upregulated but mostly downregulated genes. Upregulated genes mapped to ethylene regulation, pathogenesis regulation and transcription regulation, while downregulated genes potentially impacted defense responses, lipid transport and metal ion binding. Finally, CT2 exhibited mostly downregulated genes upon Fol-pt infection. This included genes involved in transcription regulation, defense responses, and metal ion binding. CONCLUSIONS: Results suggest that CT1 mounts a defense response against Fol-pt. IAC391 exhibits an intermediate phenotype whereby some defense response genes are activated, and others are suppressed. Finally, the transcriptional profile in the CT2 hints towards lower levels of resistance. Fo-npt also induced transcriptional changes in all cultivars, but to a lesser extent. Results of this study will support genetic breeding programs currently underway in the zone.


Asunto(s)
Fusarium/patogenicidad , Interacciones Huésped-Patógeno/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Cromosomas de las Plantas , Colombia , Resistencia a la Enfermedad/genética , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Factores de Transcripción/genética
2.
BMC Res Notes ; 6: 333, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23965285

RESUMEN

BACKGROUND: The study of coffee polysaccharides-degrading enzymes from the coffee berry borer Hypothenemus hampei, has become an important alternative in the identification for enzymatic inhibitors that can be used as an alternative control of this dangerous insect. We report the cloning, expression and biochemical characterization of a mannanase gene that was identified in the midgut of the coffee berry borer and is responsible for the degradation of the most abundant polysaccharide in the coffee bean. METHODS: The amino acid sequence of HhMan was analyzed by multiple sequence alignment comparisons with BLAST (Basic Local Alignment Search Tool) and CLUSTALW. A Pichia pastoris expression system was used to express the recombinant form of the enzyme. The mannanase activity was quantified by the 3,5-dinitrosalicylic (DNS) and the hydrolitic properties were detected by TLC. RESULTS: An endo-1,4-ß-mannanase from the digestive tract of the insect Hypothenemus hampei was cloned and expressed as a recombinant protein in the Pichia pastoris system. This enzyme is 56% identical to the sequence of an endo-ß-mannanase from Bacillus circulans that belongs to the glycosyl hydrolase 5 (GH5) family. The purified recombinant protein (rHhMan) exhibited a single band (35.5 kDa) by SDS-PAGE, and its activity was confirmed by zymography. rHhMan displays optimal activity levels at pH 5.5 and 30°C and can hydrolyze galactomannans of varying mannose:galactose ratios, suggesting that the enzymatic activity is independent of the presence of side chains such as galactose residues. The enzyme cannot hydrolyze manno-oligosaccharides such as mannobiose and mannotriose; however, it can degrade mannotetraose, likely through a transglycosylation reaction. The K(m) and k(cat) values of this enzyme on guar gum were 2.074 mg ml(-1) and 50.87 s(-1), respectively, which is similar to other mannanases. CONCLUSION: This work is the first study of an endo-1,4-ß-mannanase from an insect using this expression system. Due to this enzyme's importance in the digestive processes of the coffee berry borer, this study may enable the design of inhibitors against endo-1,4-ß-mannanase to decrease the economic losses stemming from this insect.


Asunto(s)
Clonación Molecular , Café/parasitología , Proteínas de Insectos/metabolismo , Manosidasas/metabolismo , Gorgojos/enzimología , Secuencia de Aminoácidos , Animales , Cromatografía en Capa Delgada , Clonación Molecular/métodos , Electroforesis en Gel de Poliacrilamida , Frutas , Galactanos/metabolismo , Galactosa/análogos & derivados , Interacciones Huésped-Parásitos , Concentración de Iones de Hidrógeno , Hidrólisis , Proteínas de Insectos/genética , Proteínas de Insectos/aislamiento & purificación , Cinética , Mananos/metabolismo , Manosidasas/genética , Manosidasas/aislamiento & purificación , Peso Molecular , Oligosacáridos/metabolismo , Pichia/genética , Gomas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Especificidad por Sustrato , Gorgojos/genética
3.
BMC Res Notes ; 5: 23, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22233686

RESUMEN

BACKGROUND: The coffee berry borer, Hypothenemus hampei, reproduces and feeds exclusively on the mature endosperm of the coffee seed, which has a cell wall composed mainly of a heterogeneous mixture of hemicellulose polysaccharides, including arabinoxylans. Xylanases are digestive enzymes responsible for the degradation of xylan based polymers, hydrolyzing them into smaller molecules that are easier to assimilate by insects. We report the cloning, expression and enzymatic characterization of a xylanase gene that was identified in the digestive tract of the coffee berry borer. METHODS: The complete DNA sequence encoding a H. hampei xylanase (HhXyl) was obtained using a genome walking technique in a cDNA library derived from the borer digestive tract. The XIP-I gene was amplified from wheat (Triticum aestivum variety Soisson). A Pichia pastoris expression system was used to express the recombinant form of these enzymes. The xylanase activity and XIP-I inhibitory activity was quantified by the 3,5-dinitrosalicylic (DNS). The biological effects of XIP-I on borer individuals were evaluated by providing an artificial diet enriched with the recombinant XIP-I protein to the insects. RESULTS: The borer xylanase sequence contains a 951 bp open reading frame that is predicted to encode a 317-amino acid protein, with an estimated molecular weight of 34.92 kDa and a pI of 4.84. Bioinformatic analysis revealed that HhXyl exhibits high sequence homology with endo-ß-D-xylanases of Streptomyces bingchenggensis from glycosyl hydrolase 10 (GH10). The recombinant xylanase showed maximal activity at pH 5.5 and 37°C. XIP-I expressed as a recombinant protein inhibited HhXyl activity in vitro and caused individual H. hampei mortality in bioassays when included as a supplement in artificial diets. CONCLUSION: A xylanase from the digestive tract of the coffee berry borer was identified and functionally characterized. A xylanase inhibitor protein, XIP-I, from wheat was shown to be a potent inhibitor of this xylanase, suggesting that its deployment has potential as a strategy to control coffee berry borer colonization of coffee plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA