Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 19(2): 231-241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145320

RESUMEN

Orexins (also called hypocretins) are hypothalamic neuropeptides that carry out essential functions in the central nervous system; however, little is known about their release and range of action in vivo owing to the limited resolution of current detection technologies. Here we developed a genetically encoded orexin sensor (OxLight1) based on the engineering of circularly permutated green fluorescent protein into the human type-2 orexin receptor. In mice OxLight1 detects optogenetically evoked release of endogenous orexins in vivo with high sensitivity. Photometry recordings of OxLight1 in mice show rapid orexin release associated with spontaneous running behavior, acute stress and sleep-to-wake transitions in different brain areas. Moreover, two-photon imaging of OxLight1 reveals orexin release in layer 2/3 of the mouse somatosensory cortex during emergence from anesthesia. Thus, OxLight1 enables sensitive and direct optical detection of orexin neuropeptides with high spatiotemporal resolution in living animals.


Asunto(s)
Encéfalo/metabolismo , Imagen Molecular/métodos , Receptores de Orexina/genética , Orexinas/análisis , Proteínas Recombinantes/metabolismo , Animales , Conducta Animal , Femenino , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Receptores de Orexina/metabolismo , Orexinas/genética , Orexinas/farmacología , Fotones , Proteínas Recombinantes/genética , Reproducibilidad de los Resultados , Sueño/fisiología
2.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35452310

RESUMEN

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Asunto(s)
MicroARNs , Neuropéptidos , Animales , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , MicroARNs/genética , Neuropéptidos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Sueño/genética , Vigilia/genética , Pez Cebra/metabolismo
3.
J Neurosci ; 43(20): 3696-3707, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37045604

RESUMEN

During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.


Asunto(s)
Corteza Auditiva , Lóbulo Temporal , Humanos , Femenino , Lóbulo Temporal/fisiología , Percepción Auditiva/fisiología , Amígdala del Cerebelo/fisiología , Hipocampo/fisiología , Electrocorticografía , Corteza Auditiva/fisiología , Estimulación Acústica
4.
Nat Rev Neurosci ; 20(12): 746-762, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31616106

RESUMEN

Brain activity during sleep is characterized by circuit-specific oscillations, including slow waves, spindles and theta waves, which are nested in thalamocortical or hippocampal networks. A major challenge is to determine the relationships between these oscillatory activities and the identified networks of sleep-promoting and wake-promoting neurons distributed throughout the brain. Improved understanding of the neurobiological mechanisms that orchestrate sleep-related oscillatory activities, both in time and space, is expected to generate further insight into the delineation of sleep states and their functions.


Asunto(s)
Encéfalo/fisiología , Electroencefalografía , Red Nerviosa/fisiología , Fases del Sueño/fisiología , Vigilia/fisiología , Animales , Electroencefalografía/métodos , Humanos , Sueño/fisiología
5.
Eur J Neurosci ; 57(1): 106-128, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36310348

RESUMEN

The interplay between the medial prefrontal cortex and hippocampus during non-rapid eye movement (NREM) sleep contributes to the consolidation of contextual memories. To assess the role of the thalamic nucleus reuniens (Nre) in this interaction, we investigated the coupling of neuro-oscillatory activities among prelimbic cortex, Nre, and hippocampus across sleep states and their role in the consolidation of contextual memories using multi-site electrophysiological recordings and optogenetic manipulations. We showed that ripples are time-locked to the Up state of cortical slow waves, the transition from UP to DOWN state in thalamic slow waves, the troughs of cortical spindles, and the peaks of thalamic spindles during spontaneous sleep, rebound sleep and sleep following a fear conditioning task. In addition, spiking activity in Nre increased before hippocampal ripples, and the phase-locking of hippocampal ripples and thalamic spindles during NREM sleep was stronger after acquisition of a fear memory. We showed that optogenetic inhibition of Nre neurons reduced phase-locking of ripples to cortical slow waves in the ventral hippocampus whilst their activation altered the preferred phase of ripples to slow waves in ventral and dorsal hippocampi. However, none of these optogenetic manipulations of Nre during sleep after acquisition of fear conditioning did alter sleep-dependent memory consolidation. Collectively, these results showed that Nre is central in modulating hippocampus and cortical rhythms during NREM sleep.


Asunto(s)
Corteza Cerebral , Núcleos Talámicos de la Línea Media , Núcleos Talámicos de la Línea Media/fisiología , Hipocampo/fisiología , Sueño/fisiología , Cognición , Electroencefalografía/métodos
6.
Proc Natl Acad Sci U S A ; 117(32): 19590-19598, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32732431

RESUMEN

During rapid eye movement (REM) sleep, behavioral unresponsiveness contrasts strongly with intense brain-wide neural network dynamics. Yet, the physiological functions of this cellular activation remain unclear. Using in vivo calcium imaging in freely behaving mice, we found that inhibitory neurons in the lateral hypothalamus (LHvgat) show unique activity patterns during feeding that are reactivated during REM, but not non-REM, sleep. REM sleep-specific optogenetic silencing of LHvgat cells induced a reorganization of these activity patterns during subsequent feeding behaviors accompanied by decreased food intake. Our findings provide evidence for a role for REM sleep in the maintenance of cellular representations of feeding behavior.


Asunto(s)
Conducta Alimentaria/fisiología , Área Hipotalámica Lateral/fisiología , Sueño REM/fisiología , Animales , Mapeo Encefálico , Masculino , Ratones , Red Nerviosa , Inhibición Neural , Neuronas/metabolismo , Neuronas/fisiología , Optogenética , Sueño/fisiología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
7.
J Neurosci ; 41(22): 4840-4849, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33888606

RESUMEN

The lateral hypothalamus (LH), together with multiple neuromodulatory systems of the brain, such as the dorsal raphe nucleus (DR), is implicated in arousal, yet interactions between these systems are just beginning to be explored. Using a combination of viral tracing, circuit mapping, electrophysiological recordings from identified neurons, and combinatorial optogenetics in mice, we show that GABAergic neurons in the LH selectively inhibit GABAergic neurons in the DR, resulting in increased firing of a substantial fraction of its neurons that ultimately promotes arousal. These DRGABA neurons are wake active and project to multiple brain areas involved in the control of arousal, including the LH, where their specific activation potently influences local network activity leading to arousal from sleep. Our results show how mutual inhibitory projections between the LH and the DR promote wakefulness and suggest a complex arousal control by intimate interactions between long-range connections and local circuit dynamics.SIGNIFICANCE STATEMENT: Multiple brain systems including the lateral hypothalamus and raphe serotonergic system are involved in the regulation of the sleep/wake cycle, yet the interaction between these systems have remained elusive. Here we show that mutual disinhibition mediated by long range inhibitory projections between these brain areas can promote wakefulness. The main importance of this work relies in revealing the interaction between a brain area involved in autonomic regulation and another in controlling higher brain functions including reward, patience, mood and sensory coding.


Asunto(s)
Núcleo Dorsal del Rafe/fisiología , Neuronas GABAérgicas/fisiología , Área Hipotalámica Lateral/fisiología , Vías Nerviosas/fisiología , Vigilia/fisiología , Animales , Masculino , Ratones , Sueño/fisiología
8.
Hum Mol Genet ; 29(12): 2051-2064, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32426821

RESUMEN

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder that is characterized by metabolic alteration and sleep abnormalities mostly related to rapid eye movement (REM) sleep disturbances. The disease is caused by genomic imprinting defects that are inherited through the paternal line. Among the genes located in the PWS region on chromosome 15 (15q11-q13), small nucleolar RNA 116 (Snord116) has been previously associated with intrusions of REM sleep into wakefulness in humans and mice. Here, we further explore sleep regulation of PWS by reporting a study with PWScrm+/p- mouse line, which carries a paternal deletion of Snord116. We focused our study on both macrostructural electrophysiological components of sleep, distributed among REMs and nonrapid eye movements. Of note, here, we study a novel electroencephalography (EEG) graphoelements of sleep for mouse studies, the well-known spindles. EEG biomarkers are often linked to the functional properties of cortical neurons and can be instrumental in translational studies. Thus, to better understand specific properties, we isolated and characterized the intrinsic activity of cortical neurons using in vitro microelectrode array. Our results confirm that the loss of Snord116 gene in mice influences specific properties of REM sleep, such as theta rhythms and, for the first time, the organization of REM episodes throughout sleep-wake cycles. Moreover, the analysis of sleep spindles present novel specific phenotype in PWS mice, indicating that a new catalog of sleep biomarkers can be informative in preclinical studies of PWS.


Asunto(s)
Impresión Genómica/genética , Síndrome de Prader-Willi/genética , ARN Nucleolar Pequeño/genética , Sueño/genética , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Humanos , Ratones , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Síndrome de Prader-Willi/fisiopatología , Sueño/fisiología , Sueño REM/genética
9.
J Neurosci ; 40(45): 8637-8651, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33087472

RESUMEN

Functional recovery after stroke is associated with a remapping of neural circuits. This reorganization is often associated with low-frequency, high-amplitude oscillations in the peri-infarct zone in both rodents and humans. These oscillations are reminiscent of sleep slow waves (SW) and suggestive of a role for sleep in brain plasticity that occur during stroke recovery; however, direct evidence is missing. Using a stroke model in male mice, we showed that stroke was followed by a transient increase in NREM sleep accompanied by reduced amplitude and slope of ipsilateral NREM sleep SW. We next used 5 ms optical activation of Channelrhodopsin 2-expressing pyramidal neurons, or 200 ms silencing of Archeorhodopsin T-expressing pyramidal neurons, to generate local cortical UP, or DOWN, states, respectively, both sharing similarities with spontaneous NREM SW in freely moving mice. Importantly, we found that single optogenetically evoked SW (SWopto) in the peri-infarct zone, randomly distributed during sleep, significantly improved fine motor movements of the limb corresponding to the sensorimotor stroke lesion site compared with spontaneous recovery and control conditions, while motor strength remained unchanged. In contrast, SWopto during wakefulness had no effect. Furthermore, chronic SWopto during sleep were associated with local axonal sprouting as revealed by the increase of anatomic presynaptic and postsynaptic markers in the peri-infarct zone and corresponding contralesional areas to cortical circuit reorganization during stroke recovery. These results support a role for sleep SW in cortical circuit plasticity and sensorimotor recovery after stroke and provide a clinically relevant framework for rehabilitation strategies using neuromodulation during sleep.SIGNIFICANCE STATEMENT Brain stroke is one of the leading causes of death and major disabilities in the elderly worldwide. A better understanding of the pathophysiological mechanisms underlying spontaneous brain plasticity after stroke, together with an optimization of rehabilitative strategies, are essential to improve stroke treatments. Here, we investigate the role of optogenetically induced sleep slow waves in an animal model of ischemic stroke and identify sleep as a window for poststroke intervention that promotes neuroplasticity and facilitates sensorimotor recovery.


Asunto(s)
Accidente Cerebrovascular Isquémico/fisiopatología , Plasticidad Neuronal , Sueño de Onda Lenta , Rehabilitación de Accidente Cerebrovascular , Animales , Axones/patología , Corteza Cerebral/fisiopatología , Infarto Cerebral/fisiopatología , Electroencefalografía , Accidente Cerebrovascular Isquémico/psicología , Masculino , Ratones , Ratones Endogámicos C57BL , Fuerza Muscular , Red Nerviosa/fisiopatología , Optogenética , Desempeño Psicomotor , Células Piramidales , Recuperación de la Función
10.
J Neurosci ; 40(31): 5970-5989, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32576622

RESUMEN

The cholinergic neurons in the pontomesencephalic tegmentum have been shown to discharge in association with and promote cortical activation during active or attentive waking and paradoxical or rapid eye movement sleep. However, GABA neurons lie intermingled with the cholinergic neurons and may contribute to or oppose this activity and role. Here we investigated in vitro and in vivo the properties, activities, and role of GABA neurons within the laterodorsal tegmental and sublaterodorsal tegmental nuclei (LDT/SubLDT) using male and female transgenic mice expressing channelrhodopsin-(ChR2)-EYFP in vesicular GABA transporter (VGAT)-expressing neurons. Presumed GABA (pGABA) neurons were identified by response to photostimulation and verified by immunohistochemical staining following juxtacellular labeling in vivo pGABA neurons were found to be fast-firing neurons with the capacity to burst when depolarized from a hyperpolarized membrane potential. When stimulated in vivo in urethane-anesthetized or unanesthetized mice, the pGABA neurons fired repetitively at relatively fast rates (∼40 Hz) during a continuous light pulse or phasically in bursts (>100 Hz) when driven by rhythmic light pulses at theta (4 or 8 Hz) frequencies. pNon-GABA, which likely included cholinergic, neurons were inhibited during each light pulse to discharge rhythmically in antiphase to the pGABA neurons. The reciprocal rhythmic bursting by the pGABA and pNon-GABA neurons drove rhythmic theta activity in the EEG. Such phasic bursting by GABA neurons also occurred in WT mice in association with theta activity during attentive waking and paradoxical sleep.SIGNIFICANCE STATEMENT Neurons in the pontomesencephalic tegmentum, particularly cholinergic neurons, play an important role in cortical activation, which occurs during active or attentive waking and paradoxical or rapid eye movement sleep. Yet the cholinergic neurons lie intermingled with GABA neurons, which could play a similar or opposing role. Optogenetic stimulation and recording of these GABA neurons in mice revealed that they can discharge in rhythmic bursts at theta frequencies and drive theta activity in limbic cortex. Such phasic burst firing also occurs during natural attentive waking and paradoxical sleep in association with theta activity and could serve to enhance sensory-motor processing and memory consolidation during these states.


Asunto(s)
Corteza Cerebral/fisiología , Mesencéfalo/fisiología , Puente/fisiología , Sueño/fisiología , Vigilia/fisiología , Ácido gamma-Aminobutírico/fisiología , Anestesia , Animales , Electroencefalografía , Fenómenos Electrofisiológicos , Femenino , Masculino , Mesencéfalo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética , Estimulación Luminosa , Puente/citología , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/fisiología
11.
J Neurosci Res ; 98(10): 2045-2071, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32530066

RESUMEN

Melanin-concentrating hormone (MCH) is a ubiquitous vertebrate neuropeptide predominantly synthesized by neurons of the diencephalon that can act through two G protein-coupled receptors, called MCHR1 and MCHR2. The expression of Mchr1 has been investigated in both rats and mice, but its synthesis remains poorly described. After identifying an antibody that detects MCHR1 with high specificity, we employed immunohistochemistry to map the distribution of MCHR1 in the CNS of rats and mice. Multiple neurochemical markers were also employed to characterize some of the neuronal populations that synthesize MCHR1. Our results show that MCHR1 is abundantly found in a subcellular structure called the primary cilium, which has been associated, among other functions, with the detection of free neurochemical messengers present in the extracellular space. Ciliary MCHR1 was found in a wide range of areas, including the olfactory bulb, cortical mantle, striatum, hippocampal formation, amygdala, midline thalamic nuclei, periventricular hypothalamic nuclei, midbrain areas, and in the spinal cord. No differences were observed between male and female mice, and interspecies differences were found in the caudate-putamen nucleus and the subgranular zone. Ciliary MCHR1 was found in close association with several neurochemical markers, including tyrosine hydroxylase, calretinin, kisspeptin, estrogen receptor, oxytocin, vasopressin, and corticotropin-releasing factor. Given the role of neuronal primary cilia in sensing free neurochemical messengers in the extracellular fluid, the widespread distribution of ciliary MCHR1, and the diverse neurochemical populations who synthesize MCHR1, our data indicate that nonsynaptic communication plays a prominent role in the normal function of the MCH system.


Asunto(s)
Encéfalo/metabolismo , Cilios/metabolismo , Receptores de Somatostatina/biosíntesis , Caracteres Sexuales , Animales , Cilios/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Receptores de Somatostatina/genética
13.
PLoS Comput Biol ; 15(4): e1006968, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30998681

RESUMEN

Understanding sleep and its perturbation by environment, mutation, or medication remains a central problem in biomedical research. Its examination in animal models rests on brain state analysis via classification of electroencephalographic (EEG) signatures. Traditionally, these states are classified by trained human experts by visual inspection of raw EEG recordings, which is a laborious task prone to inter-individual variability. Recently, machine learning approaches have been developed to automate this process, but their generalization capabilities are often insufficient, especially across animals from different experimental studies. To address this challenge, we crafted a convolutional neural network-based architecture to produce domain invariant predictions, and furthermore integrated a hidden Markov model to constrain state dynamics based upon known sleep physiology. Our method, which we named SPINDLE (Sleep Phase Identification with Neural networks for Domain-invariant LEearning) was validated using data of four animal cohorts from three independent sleep labs, and achieved average agreement rates of 99%, 98%, 93%, and 97% with scorings from five human experts from different labs, essentially duplicating human capability. It generalized across different genetic mutants, surgery procedures, recording setups and even different species, far exceeding state-of-the-art solutions that we tested in parallel on this task. Moreover, we show that these scored data can be processed for downstream analyzes identical to those from human-scored data, in particular by demonstrating the ability to detect mutation-induced sleep alteration. We provide to the scientific community free usage of SPINDLE and benchmarking datasets as an online server at https://sleeplearning.ethz.ch. Our aim is to catalyze high-throughput and well-standardized experimental studies in order to improve our understanding of sleep.


Asunto(s)
Electroencefalografía , Electromiografía , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Sueño/fisiología , Animales , Biología Computacional , Humanos , Aprendizaje Automático , Ratones , Modelos Animales , Ratas , Vigilia/fisiología
15.
Handb Exp Pharmacol ; 253: 125-151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29687163

RESUMEN

Optogenetic tools have revolutionized insights into the fundamentals of brain function. This is particularly true for our current understanding of sleep-wake regulation and sleep rhythms. This is illustrated here through a comprehensive and step-by-step review over the major brain areas involved in transitions between sleep and wake states and in sleep rhythmogenesis.


Asunto(s)
Optogenética , Vigilia , Encéfalo , Sueño/fisiología
16.
Front Neuroendocrinol ; 44: 27-34, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27884682

RESUMEN

The anatomical and functional mapping of lateral hypothalamic circuits has been limited by the numerous cell types and complex, yet unclear, connectivity. Recent advances in functional dissection of input-output neurons in the lateral hypothalamus have identified subset of inhibitory cells as crucial modulators of both sleep-wake states and metabolism. Here, we summarize these recent studies and discuss the multi-tasking functions of hypothalamic circuitries in integrating sleep and metabolism in the mammalian brain.


Asunto(s)
Área Hipotalámica Lateral/fisiología , Metabolismo/fisiología , Sueño/fisiología , Animales , Nivel de Alerta/fisiología , Humanos
18.
J Neurosci ; 35(14): 5435-41, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25855162

RESUMEN

The lateral hypothalamus (LH) is a key regulator of multiple vital behaviors. The firing of brain-wide-projecting LH neurons releases neuropeptides promoting wakefulness (orexin/hypocretin; OH), or sleep (melanin-concentrating hormone; MCH). OH neurons, which coexpress glutamate and dynorphin, have been proposed to excite their neighbors, including MCH neurons, suggesting that LH may sometimes coengage its antagonistic outputs. However, it remains unclear if, when, and how OH actions promote temporal separation of the sleep and wake signals, a process that fails in narcolepsy caused by OH loss. To explore this directly, we paired optogenetic stimulation of OH cells (at rates that promoted awakening in vivo) with electrical monitoring of MCH cells in mouse brain slices. Membrane potential recordings showed that OH cell firing inhibited action potential firing in most MCH neurons, an effect that required GABAA but not dynorphin receptors. Membrane current analysis showed that OH cell firing increased the frequency of fast GABAergic currents in MCH cells, an effect blocked by antagonists of OH but not dynorphin or glutamate receptors, and mimicked by bath-applied OH peptide. In turn, neural network imaging with a calcium indicator genetically targeted to MCH neurons showed that excitation by bath-applied OH peptides occurs in a minority of MCH cells. Collectively, our data provide functional microcircuit evidence that intra-LH feedforward loops may facilitate appropriate switching between sleep and wake signals, potentially preventing sleep disorders.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Neuropéptidos/metabolismo , Optogenética , Hormonas Hipofisarias/metabolismo , Transducción de Señal/fisiología , Animales , Calcio/metabolismo , Channelrhodopsins , Antagonistas de Aminoácidos Excitadores/farmacología , Área Hipotalámica Lateral/citología , Área Hipotalámica Lateral/metabolismo , Hormonas Hipotalámicas/genética , Técnicas In Vitro , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisina/análogos & derivados , Lisina/metabolismo , Melaninas/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Inhibición Neural/efectos de los fármacos , Neuropéptidos/genética , Neuropéptidos/farmacología , Orexinas , Técnicas de Placa-Clamp , Hormonas Hipofisarias/genética , Transducción Genética , Ácido gamma-Aminobutírico/metabolismo , Proteína Fluorescente Roja
19.
Eur J Neurosci ; 53(8): 2419-2420, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33759256
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA