Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nat Mater ; 22(10): 1182-1188, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37592031

RESUMEN

Since the first discovery of the fatigue phenomenon in the late 1830s, efforts to fight against fatigue failure have continued. Here we report a fatigue resistance phenomenon in nano-TiB2-decorated AlSi10Mg enabled by additive manufacturing. This fatigue resistance mechanism benefits from the three-dimensional dual-phase cellular nanostructure, which acts as a strong volumetric nanocage to prevent localized damage accumulation, thus inhibiting fatigue crack initiation. The intrinsic fatigue strength limit of nano-TiB2-decorated AlSi10Mg was proven to be close to its tensile strength through the in situ fatigue tests of a defect-free microsample. To demonstrate the practical applicability of this mechanism, printed bulk nano-TiB2-decorated AlSi10Mg achieved fatigue resistance more than double those of other additive manufacturing Al alloys and surpassed those of high-strength wrought Al alloys. This strategy of additive-manufacturing-assisted nanostructure engineering can be extended to the development of other dual-phase fatigue-resistant metals.

2.
Inorg Chem ; 63(5): 2327-2339, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38270093

RESUMEN

As a hydrogen carrier and a vital component in fertilizer production, ammonia (NH3) is set to play a crucial role in the planet's future. While its industrial production feeds half of the global population, it uses fossil fuels and emits greenhouse gases. To tackle this issue, photocatalytic nitrogen fixation using visible light is emerging as an effective alternative method. This strategy avoids carbon dioxide (CO2) emissions and harnesses the largest share of sunlight. In this work, we successfully incorporated a 5-nitro isophthalic acid linker into MOF-808 to introduce structural defects and open metal sites. This has allowed modulation of the electronic structure of the MOF and effectively reduced the band gap energy from 3.8 to 2.6 eV. Combination with g-C3N4 enhanced further NH3 production, as these two materials possess similar band gap energies, and g-C3N4 has shown excellent performance for this reaction. The nitro groups serve as acceptors, and their integration into the MOF structure allowed effective interaction with the free electron pairs on N-(C)3 in the g-C3N4 network nodes. Based on DFT calculations, it was concluded that the adsorption of N2 molecules on open metal sites caused a decrease in their triple bond energy. The modified MOF-808 showed superior performance compared with the other MOFs studied in terms of N2 photoreduction under visible light. This design concept offers valuable information about how to engineer band gap energy in MOF structures and their combination with appropriate semiconductors for solar-powered photocatalytic reactions, such as N2 or CO2 photoreduction.

3.
World J Microbiol Biotechnol ; 40(8): 252, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913279

RESUMEN

This study explores the biosynthesis of silver nanoparticles (AgNPs) using the Streptomyces tuirus S16 strain, presenting an eco-friendly alternative to mitigate the environmental and health risks of chemical synthesis methods. It focuses on optimizing medium culture conditions, understanding their physicochemical properties, and investigating their potential photothermal-based antibacterial application. The S16 strain was selected from soils contaminated with heavy metals to exploit its ability to produce diverse bioactive compounds. By employing the combination of Response Surface Methodology (RSM) and Artificial Neural Network (ANN)-Genetic Algorithm (GA) strategies, we optimized AgNPs synthesis, achieving an improvement of nearly 2.45 times the initial yield under specific conditions (Bennet's medium supplemented with glycerol [5 g/L] and casamino-acid [3 g/L] at 30 °C for 72 h). A detailed physicochemical characterization was conducted. Notably, the AgNPs were well dispersed, and a carbonaceous coating layer on their surface was confirmed using energy-dispersive X-ray spectroscopy. Furthermore, functional groups were identified using Fourier-transform infrared spectroscopy, which helped enhance the AgNPs' stability and biocompatibility. AgNPs also demonstrated efficient photothermal conversion under light irradiation (0.2 W/cm2), with temperatures increasing to 41.7 °C, after 30 min. In addition, treatment with light irradiation of E. coli K-12 model effectively reduced the concentration of AgNPs from 105 to 52.5 µg/mL, thereby enhancing the efficacy of silver nanoparticles in contact with the E. coli K-12.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Metales Pesados , Redes Neurales de la Computación , Plata , Microbiología del Suelo , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Algoritmos , Streptomyces/metabolismo , Streptomyces/efectos de la radiación , Pruebas de Sensibilidad Microbiana , Contaminantes del Suelo , Escherichia coli/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier
4.
Small ; 19(49): e2303697, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37612799

RESUMEN

Despite many efforts devoted toward the design of covalent organic frameworks (COFs) at the framework level by selecting the building blocks, their organization in the nano to meso regimes is often neglected. Moreover, the importance of processability for their applications has recently emerged and the synthesis of COF nanostructures without agglomeration is still a challenge. Herein, the first example of hybrid COF-polymer particles for which polymers are used to manipulate the 2D COF growth along a specific direction is reported. The study examines how the nature, chain-end functionality, and molar mass of the polymer influence the shaping of hybrid 2D boronate ester-linked COF-polymer particles. Catechol-poly(N-butyl acrylate) leads to the self-assembly of crystallites into quasi-spherical structures while catechol-poly(N-isopropylacrylamide) mediates the synthesis of raspberry-like COF-polymer particles with radial grain orientation. Scanning and transmission electron microscopies (SEM and TEM) and 4D-STEM-ACOM (automated crystal orientation mapping) highlight the single-crystal character of these domains with one plane family throughout the particles. Interestingly, the presence of PNIPAm on the particle surface allows their drying without co-crystallization and enables their resuspension. Kinetic investigations show that catechol-PnBuA acts as a modulator and catechol-PNIPAm induces a template effect, introducing supramolecular self-assembly properties into particles to create new morphologies with higher structural complexity, beyond the framework level.

5.
Inorg Chem ; 61(3): 1735-1744, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35001621

RESUMEN

The orthorhombic phase of KNbO3 perovskite has been applied for nitrogen (N2) photoreduction to ammonia (NH3). However, this material suffers from a low surface area and low ammonia production efficiency under UV light irradiation. To eliminate these barriers, we used a metal-organic framework (MOF), named as TMU-5 ([Zn(OBA)(BPDH)0.5]n·1.5DMF, where H2OBA = 4,4'-oxybis(benzoic acid) and BPDH = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene), for the synthesis of the KNbO3@TMU-5 hybrid material. KNbO3@TMU-5 achieved a NH3 production rate of 39.9 µmol·L-1·h-1·g-1 upon UV light irradiation, as compared to 20.5 µmol·L-1·h-1·g-1 recorded for KNbO3 under similar experimental conditions. Using different characterization techniques especially gas adsorption, cyclic voltammetry, X-ray photoelectron spectroscopy, photocurrent measurements, and Fourier transform infrared spectroscopy, it has been found that the higher photoactivity of KNbO3@TMU-5 in ammonia production is due to its higher surface area, higher electron-hole separation efficiency, and higher density of negative charges on Nb sites. This work shows that hybridization of conventional semiconductors (SCs) with photoactive MOFs can improve the photoactivity of the SC@MOF hybrid material in different reactions, especially kinetically complex reactions like photoconversion of nitrogen to ammonia.

6.
Molecules ; 27(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35566301

RESUMEN

The mechanical and physical properties of zirconium carbide (ZrC) are limited to its ability to deteriorate in oxidizing environments. Low refractory oxides are typically formed as layers on ZrC surfaces when exposed to the slightest concentrations of oxygen. However, this carbide has a wide range of applications in nuclear reactor lines and nozzle flaps in the aerospace industry, just to name a few. To develop mechanically strong and oxygen-resistant ZrC materials, the need for studying and characterizing the oxidized layers, with emphasis on the interfacial structure between ZrC and the oxidized phases, cannot be understated. In this paper, the ZrC(111)//c-ZrO2 (111) interface was studied by both finite temperature molecular dynamic simulation and DFT. The interfacial mechanical properties were characterized by the work of adhesion which revealed a Zr|OO|Zr|OO//ZrC(111) interface model as the most stable with an oxygen layer from ZrO2 being deposited on the ZrC(111) surface. Further structural analysis at the interface showed a crack in the first ZrO2 layer at the interfacial region. Investigations of the electronic structure using the density of state calculations and Bader charge analysis revealed the interfacial properties as local effects with no significant impacts in the bulk regions of the interface slab.

7.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572104

RESUMEN

In this paper, we present a versatile template-directed colloidal self-assembly method for the fabrication in aqueous phase of composition-tuned mesoporous RuO2@TiO2-SiO2 catalysts. Randomly methylated ß-cyclodextrin/Pluronic F127 supramolecular assemblies were used as soft templates, TiO2 colloids as building blocks, and tetraethyl orthosilicate as a silica source. Catalysts were characterized at different stages of their synthesis using dynamic light scattering, N2-adsorption analysis, powder X-ray diffraction, temperature programmed reduction, high-resolution transmission electron microscopy, high-angle annular bright-field and dark-field scanning transmission electron microscopy, together with EDS elemental mapping. Results revealed that both the supramolecular template and the silica loading had a strong impact on the pore characteristics and crystalline structure of the mixed oxides, as well as on the morphology of the RuO2 nanocrystals. Their catalytic performance was then evaluated in the aqueous phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) under mild conditions (50 °C, 50 bar H2). Results showed that the cyclodextrin-derived catalyst displayed almost quantitative LA conversion and 99% GVL yield in less than one hour. Moreover, this catalyst could be reused at least five times without loss of activity. This work offers an effective approach to the utilization of cyclodextrins for engineering the surface morphology of Ru nanocrystals and pore characteristics of TiO2-based materials for catalytic applications in hydrogenation reactions.


Asunto(s)
Tecnología Química Verde/métodos , Lactonas/química , Ácidos Levulínicos/química , Rutenio/química , Catálisis , Ingeniería Química/métodos , Ciclodextrinas/química , Hidrogenación , Microscopía Electrónica de Transmisión , Nanopartículas/química , Nanopartículas/ultraestructura , Porosidad , Prueba de Estudio Conceptual , Dióxido de Silicio/química , Propiedades de Superficie , Titanio/química , Difracción de Rayos X
8.
Nanotechnology ; 30(3): 035301, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30452388

RESUMEN

In this paper we report on the fabrication and electrical characterization of InAs-on-nothing metal-oxide-semiconductor field-effect transistor composed of a suspended InAs channel and raised InAs n+ contacts. This architecture is obtained using 3D selective and localized molecular beam epitaxy on a lattice mismatched InP substrate. The suspended InAs channel and InAs n+ contacts feature a reproducible and uniform shape with well-defined 3D sidewalls. Devices with 1 µm gate length present a saturation drain current (I Dsat) of 300 mA mm-1 at V DS = 0.8 V and a trans-conductance (GM ) of 120 mS mm-1 at V DS = 0.5 V. In terms of electrostatic control, the devices display a minimal subthreshold swing of 110 mV dec-1 at V DS = 0.5 V and a small drain induced barrier lowering of 50 mV V-1.

9.
Phys Chem Chem Phys ; 19(9): 6569-6578, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28203655

RESUMEN

Spinel Co2SnO4 nanoparticles are synthesized by a facile hydrothermal route in alkaline solution using SnCl4 and CoCl2 as precursors. The structure, morphology and chemical composition of the nanoparticles are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The catalytic performance of the Co2SnO4 nanoparticles is thoroughly evaluated for peroxymonosulfate (PMS) activation for removal of rhodamine B (RhB) and pentachlorophenol (PCP) from water. The influence of different process parameters on the RhB degradation efficiency is examined and the catalytic stability is evaluated. Under optimized conditions, the Co2SnO4/PMS system is very efficient with a full degradation of RhB and PCP in less than 10 min at room temperature, as revealed by high performance liquid chromatography (HPLC) analysis. Quenching experiments suggested that sulfate radicals (SO4˙-) are the main active species in the degradation process. Moreover, the Co2SnO4 catalyst is stable without any apparent activity loss after 5 cycling runs.

10.
Sensors (Basel) ; 16(10)2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27763533

RESUMEN

Perturbations in glucose homeostasis is critical for human health, as hyperglycemia (defining diabetes) leads to premature death caused by macrovascular and microvascular complications. However, the simple and accurate detection of glucose in the blood at low cost remains a challenging task, although it is of great importance for the diagnosis and therapy of diabetic patients. In this work, carbon quantum dots decorated with copper oxide nanostructures (CQDs/Cu2O) are prepared by a simple hydrothermal approach, and their potential for electrochemical non-enzymatic glucose sensing is evaluated. The proposed sensor exhibits excellent electrocatalytic activity towards glucose oxidation in alkaline solutions. The glucose sensor is characterized by a wide concentration range from 6 µM to 6 mM, a sensitivity of 2.9 ± 0.2 µA·µM-1·cm-2, and a detection limit of 6 µM at a signal-to-noise ratio S/N = 3. The sensors are successfully applied for glucose determination in human serum samples, demonstrating that the CQDs/Cu2O-based glucose sensor satisfies the requirements of complex sample detection with adapted potential for therapeutic diagnostics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA