Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(12): 6663-6674, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32139610

RESUMEN

The ubiquitous gasotransmitter hydrogen sulfide (H2S) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of H2S in Mycobacterium tuberculosis (Mtb) pathogenesis. We showed that Mtb-infected CSE-/- mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver. Similarly, in vitro Mtb infection of macrophages resulted in reduced colony forming units in CSE-/- cells. Chemical complementation of infected WT and CSE-/- macrophages using the slow H2S releaser GYY3147 and the CSE inhibitor DL-propargylglycine demonstrated that H2S is the effector molecule regulating Mtb survival in macrophages. Furthermore, we demonstrate that CSE promotes an excessive innate immune response, suppresses the adaptive immune response, and reduces circulating IL-1ß, IL-6, TNF-α, and IFN-γ levels in response to Mtb infection. Notably, Mtb infected CSE-/- macrophages show increased flux through glycolysis and the pentose phosphate pathway, thereby establishing a critical link between H2S and central metabolism. Our data suggest that excessive H2S produced by the infected WT mice reduce HIF-1α levels, thereby suppressing glycolysis and production of IL-1ß, IL-6, and IL-12, and increasing bacterial burden. Clinical relevance was demonstrated by the spatial distribution of H2S-producing enzymes in human necrotic, nonnecrotic, and cavitary pulmonary tuberculosis (TB) lesions. In summary, CSE exacerbates TB pathogenesis by altering immunometabolism in mice and inhibiting CSE or modulating glycolysis are potential targets for host-directed TB control.


Asunto(s)
Carbono/metabolismo , Cistationina gamma-Liasa/fisiología , Sulfuro de Hidrógeno/toxicidad , Mycobacterium tuberculosis/inmunología , Tuberculosis Pulmonar/etiología , Alquinos/farmacología , Animales , Cistationina gamma-Liasa/antagonistas & inhibidores , Citocinas/metabolismo , Inhibidores Enzimáticos/farmacología , Glicina/análogos & derivados , Glicina/farmacología , Glucólisis , Sulfuro de Hidrógeno/metabolismo , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium tuberculosis/efectos de los fármacos , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Células Mieloides/metabolismo , Transducción de Señal , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/patología
2.
Antimicrob Agents Chemother ; 65(10): e0093221, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34339269

RESUMEN

High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development for cancer, metabolic, and neurological disorders and for antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte-derived macrophages (hMDMs). We found that the XF analysis reveals earlier drug-induced effects on the cells' bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/toxicidad , Metabolismo Energético , Humanos , Macrófagos
4.
Cell Rep ; 29(11): 3564-3579.e5, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825836

RESUMEN

The immunometabolic mechanisms underlying suboptimal T cell immunity in tuberculosis remain undefined. Here, we examine how chronic Mycobacterium tuberculosis (Mtb) and M. bovis BCG infections rewire metabolic circuits and alter effector functions in lung CD8+ T cells. As Mtb infection progresses, mitochondrial metabolism deteriorates in CD8+ T cells, resulting in an increased dependency on glycolysis that potentiates inflammatory cytokine production. Over time, these cells develop bioenergetic deficiencies that reflect metabolic "quiescence." This bioenergetic signature coincides with increased mitochondrial dysfunction and inhibitory receptor expression and was not observed in BCG infection. Remarkably, the Mtb-triggered decline in T cell bioenergetics can be reinvigorated by metformin, giving rise to an Mtb-specific CD8+ T cell population with improved metabolism. These findings provide insights into Mtb pathogenesis whereby glycolytic reprogramming and compromised mitochondrial function contribute to the breakdown of CD8+ T cell immunity during chronic disease, highlighting opportunities to reinvigorate immunity with metabolically targeted pharmacologic agents.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Glucólisis , Tuberculosis Latente/inmunología , Mitocondrias/metabolismo , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Células Cultivadas , Femenino , Hipoglucemiantes/farmacología , Tuberculosis Latente/microbiología , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Mycobacterium bovis/patogenicidad , Mycobacterium tuberculosis/patogenicidad
5.
Elife ; 72018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30444490

RESUMEN

How Mycobacterium tuberculosis (Mtb) rewires macrophage energy metabolism to facilitate survival is poorly characterized. Here, we used extracellular flux analysis to simultaneously measure the rates of glycolysis and respiration in real time. Mtb infection induced a quiescent energy phenotype in human monocyte-derived macrophages and decelerated flux through glycolysis and the TCA cycle. In contrast, infection with the vaccine strain, M. bovis BCG, or dead Mtb induced glycolytic phenotypes with greater flux. Furthermore, Mtb reduced the mitochondrial dependency on glucose and increased the mitochondrial dependency on fatty acids, shifting this dependency from endogenous fatty acids in uninfected cells to exogenous fatty acids in infected macrophages. We demonstrate how quantifiable bioenergetic parameters of the host can be used to accurately measure and track disease, which will enable rapid quantifiable assessment of drug and vaccine efficacy. Our findings uncover new paradigms for understanding the bioenergetic basis of host metabolic reprogramming by Mtb.


Asunto(s)
Ciclo del Ácido Cítrico/genética , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Glucólisis/genética , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Diferenciación Celular/efectos de los fármacos , Respiración de la Célula , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Macrófagos/metabolismo , Metaboloma , Mitocondrias/metabolismo , Mycobacterium bovis/crecimiento & desarrollo , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/crecimiento & desarrollo , Células THP-1 , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA