Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Arch Virol ; 169(3): 64, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451333

RESUMEN

Tomato necrotic ringspot virus (TNRV) was first reported in Thailand in 2011, where it continues to reduce the yield and quality of pepper and tomato crops. Here, we report the complete genome sequence of TNRV isolate chilli-CR derived from next-generation sequencing. The TNRV genome comprises 16,595 nucleotides (nt) on three RNA segments. The L RNA is 8,858 nt, the M RNA is 4,724 nt, and the S RNA is 3,013 nt in length. The genome structure and organization are typical of orthotospoviruses, encoding five proteins, named L, NSm, GNGC, NSs, and N. Pairwise comparison of each genomic RNA segment and its deduced amino acid (aa) sequence showed that TNRV chilli-CR shares 73.6-82.3% nt sequence identity and 81.1-91.9% aa sequence identity with pepper chlorotic spot virus (PCSV). Similar phylogenetic groupings were observed based on each genomic RNA or deduced aa sequence, and with concatenated genomic RNA sequences. The clustering of TNRV and PCSV in all phylogenetic analyses, and the 78.9% overall nt sequence identity observed using the concatenated genomic RNAs suggest that TNRV is a distinct orthotospovirus and that analysis of concatenated orthotospovirus genome sequences will be of value in future phylogenetic studies of this virus group.


Asunto(s)
Nepovirus , Solanum lycopersicum , Tailandia , Filogenia , Secuenciación de Nucleótidos de Alto Rendimiento , Necrosis , Nucleótidos , ARN
2.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38059782

RESUMEN

Discoviridae is a family of negative-sense RNA viruses with genomes of 6.2-9.7 kb that have been associated with fungi and stramenopiles. The discovirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a nonstructural protein (Ns), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Discoviridae, which is available at ictv.global/report/discoviridae.


Asunto(s)
Virus ARN , Virus , Virus ARN/genética , Genoma Viral , Virus/genética , Virus ARN de Sentido Negativo , Nucleoproteínas/genética , Replicación Viral , Virión/genética
3.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38112172

RESUMEN

Mypoviridae is a family of negative-sense RNA viruses with genomes of about 16.0 kb that have been found in myriapods. The mypovirid genome consists of three monocistronic RNA segments that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Mypoviridae, which is available at: ictv.global/report/mypoviridae.


Asunto(s)
Artrópodos , Virus ARN , Virus , Animales , Genoma Viral , Virus ARN/genética , Virus/genética , Virus ARN de Sentido Negativo , Replicación Viral , Virión/genética
4.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116934

RESUMEN

Tulasviridae is a family of ambisense RNA viruses with genomes of about 12.2 kb that have been found in fungi. The tulasvirid genome is nonsegmented and contains three open reading frames (ORFs) that encode a nucleoprotein (NP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and a protein of unknown function (X). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Tulasviridae, which is available at ictv.global/report/tulasviridae.


Asunto(s)
Virus ARN , Virus , Genoma Viral , Virus/genética , Virus ARN/genética , Filogenia , Nucleoproteínas/genética , Replicación Viral
5.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116933

RESUMEN

Wupedeviridae is a family of negative-sense RNA viruses with genomes of about 20.5 kb that have been found in myriapods. The wupedevirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Wupedeviridae, which is available at ictv.global/report/wupedeviridae.


Asunto(s)
Artrópodos , Virus ARN , Virus , Animales , Genoma Viral , Virus ARN/genética , Virus/genética , Virus ARN de Sentido Negativo , Replicación Viral , Virión/genética
6.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38117185

RESUMEN

Cruliviridae is a family of negative-sense RNA viruses with genomes of 10.8-11.5 kb that have been found in crustaceans. The crulivirid genome consists of three RNA segments with ORFs that encode a nucleoprotein (NP), a glycoprotein (GP), a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain, and in some family members, a zinc-finger (Z) protein of unknown function. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Cruliviridae, which is available at ictv.global/report/cruliviridae.


Asunto(s)
Virus ARN , Virus ARN de Sentido Negativo , Nucleoproteínas , Sistemas de Lectura Abierta , ARN
7.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064269

RESUMEN

Leishbuviridae is a family of negative-sense RNA viruses with genomes of about 8.0 kb that have been found in protists. The leishbuvirid genome consists of three monocistronic RNA segments with open reading frames (ORFs) that encode a nucleoprotein (NP), a glycoprotein (GP), and a large (L) protein containing an RNA-directed RNA polymerase (RdRP) domain. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Leishbuviridae, which is available at ictv.global/report/leishbuviridae.


Asunto(s)
Genoma Viral , Virus ARN , Virus ARN/genética , Virus ARN de Sentido Negativo , Nucleoproteínas/genética , Replicación Viral , Virión/genética
8.
J Gen Virol ; 104(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37622664

RESUMEN

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Virus ARN de Sentido Negativo , Virus ARN , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética
9.
Phytopathology ; 113(3): 567-576, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36222536

RESUMEN

Tomato chlorotic spot virus (TCSV) is a highly destructive, thrips-transmitted, emerging orthotospovirus in various vegetable and ornamental crops. It is important to reduce the risk of spreading this virus by limiting the movement of infected plant materials to other geographic areas by utilizing point-of-care diagnostics. Current diagnostic assays for TCSV require costly lab equipment, skilled personnel, and electricity. Here, we report the development of a simple rechargeable battery-operated handwarmer-assisted reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay and demonstrate a step-by-step protocol to achieve in-field detection of TCSV. Under field conditions, handwarmer-assisted RT-LAMP can detect as little as 0.9 pg/µl of total RNA from TCSV-infected tomato plants in <35 min. When fully charged, the field-portable device can be used in six consecutive RT-LAMP detection assays, yielding test results for 96 individual samples. Dye-based colorimetric methods, including pH and metal ion indicators, were evaluated to eliminate laboratory-dependent LAMP visualization. Phenol red combined with hydroxynaphthol blue was adopted in the handwarmer-assisted RT-LAMP detection method to obtain a more robust color difference distinguishable by the naked eye. Overall, handwarmer-assisted RT-LAMP is a rapid, highly sensitive, and cost-effective diagnostic technique that can be used by nonspecialist personnel in the field, particularly in rural production areas lacking access to a diagnostic lab or constant electricity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Solanum lycopersicum , Enfermedades de las Plantas , Técnicas de Amplificación de Ácido Nucleico/métodos , Transcripción Reversa , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular
10.
Phytopathology ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37856697

RESUMEN

Tomato spotted wilt virus (TSWV) and related thrips-borne orthotospoviruses are a threat to food and ornamental crops. Orthotospoviruses have the capacity for rapid genetic change by genome segment reassortment and mutation. Genetic resistance is one of the most effective strategies for managing orthotospoviruses, but there are multiple examples of resistance gene breakdown. Our goal was to develop effective multigenic, broad-spectrum resistance to TSWV and other orthotospoviruses. The most conserved sequences for each open reading frame (ORF) of the TSWV genome were identified and comparison to other orthotospoviruses revealed sequence conservation within virus clades and some overlapped with domains with well-documented biological functions. We made six hairpin constructs, each of which incorporated sequences matching portions of all five ORFs. Tomato plants expressing the hairpin transgene were challenged with TSWV by thrips and leaf-rub inoculation and four constructs provided strong protection against TSWV in foliage and fruit. To determine if the hairpin constructs provided protection against other emerging orthotospoviruses, we challenged the plants with tomato chlorotic spot virus and resistance-breaking TSWV (RB-TSWV) and found that the same constructs also provided resistance to these related viruses. Antiviral hairpin constructs are an effective way to protect plants from multiple orthotospoviruses and are an important strategy in the fight against RB-TSWV and emerging viruses. Targeting of all five viral ORFs is expected to increase the durability of resistance and combining them with other resistance genes could further extend the utility of this disease control strategy.

11.
Arch Virol ; 167(12): 2857-2906, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36437428

RESUMEN

In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Mononegavirales , Virus , Humanos , Mononegavirales/genética , Filogenia
12.
Arch Virol ; 166(12): 3513-3566, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34463877

RESUMEN

In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Mononegavirales , Virus , Humanos
13.
J Gen Virol ; 101(1): 1-2, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31846417

RESUMEN

Peribunyaviruses are enveloped and possess three distinct, single-stranded, negative-sense RNA segments comprising 11.2-12.5 kb in total. The family includes globally distributed viruses in the genera Orthobunyavirus, Herbevirus, Pacuvirus and Shangavirus. Most viruses are maintained in geographically-restricted vertebrate-arthropod transmission cycles that can include transovarial transmission from arthropod dam to offspring. Others are arthropod-specific. Arthropods can be persistently infected. Human infection occurs through blood feeding by an infected vector arthropod. Infections can result in a diversity of human and veterinary clinical outcomes in a strain-specific manner. Segment reassortment is evident between some peribunyaviruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the family Peribunyaviridae, which is available at ictv.global/report/peribunyaviridae.


Asunto(s)
Virus ARN/clasificación , Virus ARN/genética , Animales , Vectores Artrópodos/genética , Artrópodos/virología , Genoma Viral/genética , Humanos , Filogenia , Virión/genética
14.
Arch Virol ; 165(10): 2389-2392, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32699979

RESUMEN

A novel tobamovirus, brugmansia latent virus (BrLV), was discovered during a study of brugmansia (Brugmansia spp.) in the living collections held at the Royal Botanic Gardens, Kew. Here, we report the complete genome sequence of BrLV, which is 6,397 nucleotides long and contains the four open reading frames (RNA-dependent RNA polymerase, methyltransferase/helicase, movement, and coat proteins) typical of tobamoviruses. The complete genome sequence of BrLV shares 69.7% nucleotide sequence identity with brugmansia mild mottle virus (BrMMV) and 66.7 to 68.7% identity with other tobamoviruses naturally infecting members of the Solanaceae plant family. Phylogenetic analysis of the complete genome nucleotide sequence and the deduced amino acid sequences of the four tobamovirus proteins place BrLV in a subcluster with BrMMV within the Solanaceae-infecting tobamovirus subgroup as a new species.


Asunto(s)
Brugmansia/virología , Proteínas de la Cápside/genética , Genoma Viral , ARN Viral/genética , Tobamovirus/genética , Secuencia de Bases , Secuencia Conservada , Metiltransferasas/genética , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/virología , ARN Polimerasa Dependiente del ARN/genética , Alineación de Secuencia , Tobamovirus/clasificación , Tobamovirus/aislamiento & purificación , Reino Unido , Secuenciación Completa del Genoma
15.
Arch Virol ; 165(12): 3023-3072, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32888050

RESUMEN

In March 2020, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. At the genus rank, 20 new genera were added, two were deleted, one was moved, and three were renamed. At the species rank, 160 species were added, four were deleted, ten were moved and renamed, and 30 species were renamed. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Asunto(s)
Mononegavirales/clasificación , Terminología como Asunto
16.
Phytopathology ; 110(6): 1235-1241, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32096698

RESUMEN

Cucurbit leaf crumple virus (CuLCrV), a bipartite begomovirus, is transmitted by whiteflies in a persistent and circulative manner. Like other begomoviruses, CuLCrV transmission via feeding is well understood; however, whether and how CuLCrV is transmitted by horizontal and vertical modes in its vector, Bemisia tabaci, remains unexplored. We studied transovarial and mating transmission of CuLCrV, and comparatively analyzed virus accumulation in whiteflies through feeding and nonfeeding modes. Furthermore, we quantified CuLCrV DNA A accumulation at different time points to determine whether this virus propagates in whiteflies. CuLCrV DNA A was transmitted vertically and horizontally by B. tabaci, with low frequency in each case. Transovarial transmission of CuLCrV DNA A was only 3.93% in nymphs and 3.09% in adults. Similarly, only a single viruliferous male was able to transmit CuLCrV DNA A to its nonviruliferous female counterparts via mating. In contrast, viruliferous females were unable to transmit CuLCrV DNA A to nonviruliferous males. Additionally, the recipient adults that presumably acquired CuLCrV transovarially and via mating were not able to transmit the virus to squash plants. We further report that the CuLCrV DNA A viral copy numbers were significantly lower in nonfeeding modes of transmission than in feeding ones. The viral copy numbers significantly decreased at succeeding time points throughout adulthood, suggesting no CuLCrV propagation in B. tabaci. Altogether, the low frequency of nonfeeding transmission, reduced virus accumulation in whiteflies, and absence of plant infectivity through nonfeeding transmission suggest that transovarial and mating CuLCrV transmission might not substantially contribute to CuLCrV epidemics.


Asunto(s)
Begomovirus , Hemípteros , Animales , Femenino , Masculino , Enfermedades de las Plantas , Hojas de la Planta , Plantas
17.
Phytopathology ; 110(1): 130-145, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31573394

RESUMEN

Epidemics of tomato yellow leaf curl virus (TYLCV; species Tomato yellow leaf curl begomovirus) have been problematic to tomato production in the southeastern United States since the first detection of the virus in Florida in the late 1990s. Current strategies for management focus on farm-centric tactics that have had limited success for controlling either TYLCV or its whitefly vector. Areawide pest management (AWPM)-loosely defined as a coordinated effort to implement management strategies on a regional scale-may be a viable management alternative. A prerequisite for development of an AWPM program is an understanding of the spatial and temporal dynamics of the target pathogen and pest populations. The objective of this study was to characterize populations of whitefly and TYLCV in commercial tomato production fields in southwestern Florida and utilize this information to develop predictors of whitefly density and TYLCV disease incidence as a function of environmental and geographical factors. Scouting reports were submitted by cooperating growers located across approximately 20,000 acres in southwestern Florida from 2006 to 2012. Daily weather data were obtained from several local weather stations. Moran's I was used to assess spatial relationships and polynomial distributed lag regression was used to determine the relationship between weather variables, whitefly, and TYLCV. Analyses showed that the incidence of TYLCV increased proportionally with mean whitefly density as the season progressed. Nearest-neighbor analyses showed a strong linear relationship between the logarithms of whitefly densities in neighboring fields. A similar relationship was found with TYLCV incidences. Correlograms based on Moran's I showed that these relationships extended beyond neighboring fields and out to approximately 2.5 km for TYLCV and up to 5 km for whitefly, and that values of I were generally higher during the latter half of the production season for TYLCV. Weather was better at predicting whitefly density than at predicting TYLCV incidence. Whitefly density was best predicted by the number of days with an average temperature between 16 and 24°C (T16to24), relative humidity (RH) over the previous 31 days, and vapor pressure deficit over the last 8 days. TYLCV incidence was best predicted by T16to24, RH, and maximum wind speed over the previous 31 days. Results of this study helped to identify the extent to which populations of whitefly and TYLCV exist over the agricultural landscape of southwestern Florida, and the environmental conditions that favor epidemic growth. This information was used to propose an approach to AWPM for timing control measures for managing TYLCV epidemics.


Asunto(s)
Begomovirus , Hemípteros , Enfermedades de las Plantas , Solanum lycopersicum , Animales , Begomovirus/fisiología , Florida , Hemípteros/virología , Solanum lycopersicum/virología , Enfermedades de las Plantas/virología , Densidad de Población , Sudeste de Estados Unidos , Factores de Tiempo
18.
Entropy (Basel) ; 22(11)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33287037

RESUMEN

For millennia humans have benefitted from application of the acute canine sense of smell to hunt, track and find targets of importance. In this report, canines were evaluated for their ability to detect the severe exotic phytobacterial arboreal pathogen Xanthomonas citri pv. citri (Xcc), which is the causal agent of Asiatic citrus canker (Acc). Since Xcc causes only local lesions, infections are non-systemic, limiting the use of serological and molecular diagnostic tools for field-level detection. This necessitates reliance on human visual surveys for Acc symptoms, which is highly inefficient at low disease incidence, and thus for early detection. In simulated orchards the overall combined performance metrics for a pair of canines were 0.9856, 0.9974, 0.9257 and 0.9970, for sensitivity, specificity, precision, and accuracy, respectively, with 1-2 s/tree detection time. Detection of trace Xcc infections on commercial packinghouse fruit resulted in 0.7313, 0.9947, 0.8750, and 0.9821 for the same performance metrics across a range of cartons with 0-10% Xcc-infected fruit despite the noisy, hot and potentially distracting environment. In orchards, the sensitivity of canines increased with lesion incidence, whereas the specificity and overall accuracy was >0.99 across all incidence levels; i.e., false positive rates were uniformly low. Canines also alerted to a range of 1-12-week-old infections with equal accuracy. When trained to either Xcc-infected trees or Xcc axenic cultures, canines inherently detected the homologous and heterologous targets, suggesting they can detect Xcc directly rather than only volatiles produced by the host following infection. Canines were able to detect the Xcc scent signature at very low concentrations (10,000× less than 1 bacterial cell per sample), which implies that the scent signature is composed of bacterial cell volatile organic compound constituents or exudates that occur at concentrations many fold that of the bacterial cells. The results imply that canines can be trained as viable early detectors of Xcc and deployed across citrus orchards, packinghouses, and nurseries.

19.
Arch Virol ; 164(11): 2829-2836, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31486908

RESUMEN

The complete sequence of the medium (M) and small (S) RNA genome segments were determined for twelve isolates of impatiens necrotic spot virus from eight plant species. The M- and S-RNAs of these isolates shared 97-99% and 93-98% nucleotide sequence identity, respectively, with the corresponding full-length sequences available in public databases. Phylogenetic analysis based on the M- or S-RNA sequences showed incongruence in the phylogenetic position of some isolates, suggesting intraspecies segment reassortment. The lack of phylogenetic discordance in individual and concatenated sequences of individual genes encoded by M- or S-RNAs suggests that segment reassortment rather than recombination is driving evolution of these INSV isolates.


Asunto(s)
ARN Viral/genética , Virus Reordenados/genética , Tospovirus/genética , Secuencia de Bases , Genoma Viral/genética , Plantas/virología , Análisis de Secuencia de ARN , Tospovirus/aislamiento & purificación
20.
Arch Virol ; 164(7): 1949-1965, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31065850

RESUMEN

In February 2019, following the annual taxon ratification vote, the order Bunyavirales was amended by creation of two new families, four new subfamilies, 11 new genera and 77 new species, merging of two species, and deletion of one species. This article presents the updated taxonomy of the order Bunyavirales now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Asunto(s)
Bunyaviridae/clasificación , Bunyaviridae/genética , Genoma Viral/genética , Filogenia , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA