Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099562

RESUMEN

High levels of homocysteine are reported as a risk factor for Alzheimer's disease (AD). Correspondingly, inborn hyperhomocysteinemia is associated with an increased predisposition to the development of dementia in later stages of life. Yet, the mechanistic link between homocysteine accumulation and the pathological neurodegenerative processes is still elusive. Furthermore, despite the clear association between protein aggregation and AD, attempts to develop therapy that specifically targets this process have not been successful. It is envisioned that the failure in the development of efficacious therapeutic intervention may lie in the metabolomic state of affected individuals. We recently demonstrated the ability of metabolites to self-assemble and cross-seed the aggregation of pathological proteins, suggesting a role for metabolite structures in the initiation of neurodegenerative diseases. Here, we provide a report of homocysteine crystal structure and self-assembly into amyloid-like toxic fibrils, their inhibition by polyphenols, and their ability to seed the aggregation of the AD-associated ß-amyloid polypeptide. A yeast model of hyperhomocysteinemia indicates a toxic effect, correlated with increased intracellular amyloid staining that could be rescued by polyphenol treatment. Analysis of AD mouse model brain sections indicates the presence of homocysteine assemblies and the interplay between ß-amyloid and homocysteine. This work implies a molecular basis for the association between homocysteine accumulation and AD pathology, potentially leading to a paradigm shift in the understanding of AD initial pathological processes.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Homocisteína/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/ultraestructura , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/patología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Homocisteína/química , Humanos , Espectrometría de Movilidad Iónica , Cinética , Ratones Transgénicos , Modelos Biológicos , Polifenoles/farmacología , Saccharomyces cerevisiae/metabolismo
2.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502079

RESUMEN

The formation of amyloid-like structures by metabolites is associated with several inborn errors of metabolism (IEMs). These structures display most of the biological, chemical and physical properties of protein amyloids. However, the molecular interactions underlying the assembly remain elusive, and so far, no modulating therapeutic agents are available for clinical use. Chemical chaperones are known to inhibit protein and peptide amyloid formation and stabilize misfolded enzymes. Here, we provide an in-depth characterization of the inhibitory effect of osmolytes and hydrophobic chemical chaperones on metabolite assemblies, thus extending their functional repertoire. We applied a combined in vivo-in vitro-in silico approach and show their ability to inhibit metabolite amyloid-induced toxicity and reduce cellular amyloid content in yeast. We further used various biophysical techniques demonstrating direct inhibition of adenine self-assembly and alteration of fibril morphology by chemical chaperones. Using a scaffold-based approach, we analyzed the physiochemical properties of various dimethyl sulfoxide derivatives and their role in inhibiting metabolite self-assembly. Lastly, we employed whole-atom molecular dynamics simulations to elucidate the role of hydrogen bonds in osmolyte inhibition. Our results imply a dual mode of action of chemical chaperones as IEMs therapeutics, that could be implemented in the rational design of novel lead-like molecules.


Asunto(s)
Amiloide/efectos de los fármacos , Dimetilsulfóxido/farmacología , Adenina/química , Adenina/metabolismo , Amiloide/química , Amiloide/metabolismo , Dimetilsulfóxido/análogos & derivados , Simulación de Dinámica Molecular , Polimerizacion/efectos de los fármacos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
ACS Nano ; 16(8): 11733-11741, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35815521

RESUMEN

Both DNA- and RNA-based nanotechnologies are remarkably useful for the engineering of molecular devices in vitro and are applied in a vast collection of applications. Yet, the ability to integrate functional nucleic acid nanostructures in applications outside of the lab requires overcoming their inherent degradation sensitivity and subsequent loss of function. Viruses are minimalistic yet sophisticated supramolecular assemblies, capable of shielding their nucleic acid content in nuclease-rich environments. Inspired by this natural ability, we engineered RNA-virus-like particles (VLPs) nanocarriers (NCs). We showed that the VLPs can function as an exceptional protective shell against nuclease-mediated degradation. We then harnessed biological recognition elements and demonstrated how engineered riboswitch NCs can act as a possible disease-modifying treatment for genetic metabolic disorders. The functional riboswitch is capable of selectively and specifically binding metabolites and preventing their self-assembly process and its downstream effects. When applying the riboswitch nanocarriers to an in vivo yeast model of adenine accumulation and self-assembly, significant inhibition of the sensitivity to adenine feeding was observed. In addition, using an amyloid-specific dye, we proved the riboswitch nanocarriers' ability to reduce the level of intracellular amyloid-like metabolite cytotoxic structures. The potential of this RNA therapeutic technology does not apply only to metabolic disorders, as it can be easily fine-tuned to be applied to other conditions and diseases.


Asunto(s)
Enfermedades Metabólicas , Riboswitch , Humanos , Conformación de Ácido Nucleico , ARN/química , Adenina/metabolismo
4.
Front Mol Biosci ; 6: 15, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30968029

RESUMEN

First described almost two decades ago, the pioneering yeast models of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases, have become well-established research tools, providing both basic mechanistic insights as well as a platform for the development of therapeutic agents. These maladies are associated with the formation of aggregative amyloid protein structures showing common characteristics, such as the assembly of soluble oligomeric species, binding of indicative dyes, and apoptotic cytotoxicity. The canonical yeast models have recently been expanded by the establishment of a model for type II diabetes, a non-neurological amyloid-associated disease. While these model systems require the exogenous expression of mammalian proteins in yeast, an additional amyloid-associated disease model, comprising solely mutations of endogenous yeast genes, has been recently described. Mutated in the adenine salvage pathway, this yeast model exhibits adenine accumulation, thereby recapitulating adenine inborn error of metabolism disorders. Moreover, in line with the recent extension of the amyloid hypothesis to include metabolite amyloids, in addition to protein-associated ones, the intracellular assembly of adenine amyloid-like structures has been demonstrated using this yeast model. In this review, we describe currently available yeast models of diverse amyloid-associated disorders, as well as their impact on our understanding of disease mechanisms and contribution to future potential drug development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA