Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proteomics ; 16(11-12): 1660-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26970438

RESUMEN

MALDI mass spectrometry imaging (MSI) is emerging as a tool for protein and peptide imaging across tissue sections. Despite extensive study, there does not yet exist a baseline study evaluating the potential capabilities for this technique to detect diverse proteins in tissue sections. In this study, we developed a systematic approach for characterizing MALDI-MSI workflows in terms of limits of detection, coefficients of variation, spatial resolution, and the identification of endogenous tissue proteins. Our goal was to quantify these figures of merit for a number of different proteins and peptides, in order to gain more insight in the feasibility of protein biomarker discovery efforts using this technique. Control proteins and peptides were deposited in serial dilutions on thinly sectioned mouse xenograft tissue. Using our experimental setup, coefficients of variation were <30% on tissue sections and spatial resolution was 200 µm (or greater). Limits of detection for proteins and peptides on tissue were in the micromolar to millimolar range. Protein identification was only possible for proteins present in high abundance in the tissue. These results provide a baseline for the application of MALDI-MSI towards the discovery of new candidate biomarkers and a new benchmarking strategy that can be used for comparing diverse MALDI-MSI workflows.


Asunto(s)
Biomarcadores , Péptidos/genética , Proteínas/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Humanos , Límite de Detección , Ratones , Péptidos/aislamiento & purificación , Proteínas/aislamiento & purificación , Proteómica , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Pac Symp Biocomput ; 24: 208-219, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30864323

RESUMEN

Benchmark challenges, such as the Critical Assessment of Structure Prediction (CASP) and Dialogue for Reverse Engineering Assessments and Methods (DREAM) have been instrumental in driving the development of bioinformatics methods. Typically, challenges are posted, and then competitors perform a prediction based upon blinded test data. Challengers then submit their answers to a central server where they are scored. Recent efforts to automate these challenges have been enabled by systems in which challengers submit Docker containers, a unit of software that packages up code and all of its dependencies, to be run on the cloud. Despite their incredible value for providing an unbiased test-bed for the bioinformatics community, there remain opportunities to further enhance the potential impact of benchmark challenges. Specifically, current approaches only evaluate end-to-end performance; it is nearly impossible to directly compare methodologies or parameters. Furthermore, the scientific community cannot easily reuse challengers' approaches, due to lack of specifics, ambiguity in tools and parameters as well as problems in sharing and maintenance. Lastly, the intuition behind why particular steps are used is not captured, as the proposed workflows are not explicitly defined, making it cumbersome to understand the flow and utilization of data. Here we introduce an approach to overcome these limitations based upon the WINGS semantic workflow system. Specifically, WINGS enables researchers to submit complete semantic workflows as challenge submissions. By submitting entries as workflows, it then becomes possible to compare not just the results and performance of a challenger, but also the methodology employed. This is particularly important when dozens of challenge entries may use nearly identical tools, but with only subtle changes in parameters (and radical differences in results). WINGS uses a component driven workflow design and offers intelligent parameter and data selection by reasoning about data characteristics. This proves to be especially critical in bioinformatics workflows where using default or incorrect parameter values is prone to drastically altering results. Different challenge entries may be readily compared through the use of abstract workflows, which also facilitate reuse. WINGS is housed on a cloud based setup, which stores data, dependencies and workflows for easy sharing and utility. It also has the ability to scale workflow executions using distributed computing through the Pegasus workflow execution system. We demonstrate the application of this architecture to the DREAM proteogenomic challenge.


Asunto(s)
Benchmarking/métodos , Semántica , Flujo de Trabajo , Algoritmos , Biología Computacional/métodos , Perfilación de la Expresión Génica/estadística & datos numéricos , Genómica , Metadatos , Proteínas/genética , Proteínas/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/estadística & datos numéricos
3.
Sci Rep ; 8(1): 6509, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695737

RESUMEN

Currently prostate-specific antigen is used for prostate cancer (PCa) screening, however it lacks the necessary specificity for differentiating PCa from other diseases of the prostate such as benign prostatic hyperplasia (BPH), presenting a clinical need to distinguish these cases at the molecular level. Protein glycosylation plays an important role in a number of cellular processes involved in neoplastic progression and is aberrant in PCa. In this study, we systematically interrogate the alterations in the circulating levels of hundreds of serum proteins and their glycoforms in PCa and BPH samples using multi-lectin affinity chromatography and quantitative mass spectrometry-based proteomics. Specific lectins (AAL, PHA-L and PHA-E) were used to target and chromatographically separate core-fucosylated and highly-branched protein glycoforms for analysis, as differential expression of these glycan types have been previously associated with PCa. Global levels of CD5L, CFP, C8A, BST1, and C7 were significantly increased in the PCa samples. Notable glycoform-specific alterations between BPH and PCa were identified among proteins CD163, C4A, and ATRN in the PHA-L/E fraction and among C4BPB and AZGP1 glycoforms in the AAL fraction. Despite these modest differences, substantial similarities in glycoproteomic profiles were observed between PCa and BPH sera.


Asunto(s)
Lectinas/metabolismo , Proteínas de la Membrana/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Neoplasias de la Próstata/metabolismo , Adulto , Anciano , Cromatografía de Afinidad , Glicosilación , Humanos , Masculino , Persona de Mediana Edad , Antígeno Prostático Específico/metabolismo , Proteómica/métodos , Sensibilidad y Especificidad
4.
Methods Mol Biol ; 1550: 339-368, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28188540

RESUMEN

Recent advances in proteome informatics have led to an explosion in tools to analyze mass spectrometry data. These tools operate across the analysis pipeline doing everything from assessing quality control to matching peptides to spectra to quantification. Unfortunately, the vast majority of these tools are not able to operate directly on the proprietary formats generated by the diverse mass spectrometers. Consequently, the first step in many protocols is the conversion of data from vendor-specific binary files to open-format files. This protocol details the use of ProteoWizard's msConvert and msConvertGUI software for this conversion, taking format features, coding options, and vendor particularities into account. We specifically describe the various options available when doing conversions and the implications of each option.


Asunto(s)
Biología Computacional/métodos , Proteómica , Programas Informáticos , Estadística como Asunto/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Interfaz Usuario-Computador , Navegador Web
5.
Biomark Res ; 5: 30, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075496

RESUMEN

BACKGROUND: Quantitative proteomics allows for the discovery and functional investigation of blood-based pre-diagnostic biomarkers for early cancer detection. However, a major limitation of proteomic investigations in biomarker studies remains the biological and technical variability in the analysis of complex clinical samples. Moreover, unlike 'omics analogues such as genomics and transcriptomics, proteomics has yet to achieve reproducibility and long-term stability on a unified technological platform. Few studies have thoroughly investigated protein variability in pre-diagnostic samples of cancer patients across multiple platforms. METHODS: We obtained ten blood plasma "case" samples collected up to 2 years prior to breast cancer diagnosis. Each case sample was paired with a matched control plasma from a full biological sister without breast cancer. We measured protein levels using both mass-spectrometry and antibody-based technologies to: (1) assess the technical considerations in different protein assays when analyzing limited clinical samples, and (2) evaluate the statistical power of potential diagnostic analytes. RESULTS: Although we found inherent technical variation in the three assays used, we detected protein dependent biological signal from the limited samples. The three assay types yielded 32 proteins with statistically significantly (p < 1E-01) altered expression levels between cases and controls, with no proteins retaining statistical significance after false discovery correction. CONCLUSIONS: Technical, practical, and study design considerations are essential to maximize information obtained in limited pre-diagnostic samples of cancer patients. This study provides a framework that estimates biological effect sizes critical for consideration in designing studies for pre-diagnostic blood-based biomarker detection.

6.
J Mol Diagn ; 16(6): 660-72, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25157968

RESUMEN

Ongoing cancer genome characterization studies continue to elucidate the spectrum of genomic abnormalities that drive many cancers, and in the clinical arena assessment of the driver genetic alterations in patients is playing an increasingly important diagnostic and/or prognostic role for many cancer types. However, the landscape of genomic abnormalities is still unknown for less common cancers, and the influence of specific genotypes on clinical behavior is often still unclear. To address some of these deficiencies, we developed Profile, a prospective cohort study to obtain genomic information on all patients at a large tertiary care medical center for cancer-related care. We enrolled patients with any cancer diagnosis, and, for each patient (unselected for cancer site or type) we applied mass spectrometric genotyping (OncoMap) of 471 common recurrent mutations in 41 cancer-related genes. We report the results of the first 5000 patients, of which 26% exhibited potentially actionable somatic mutations. These observations indicate the utility of genotyping in advancing the field of precision oncology.


Asunto(s)
Genotipo , Neoplasias/genética , Humanos , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA