Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33885726

RESUMEN

Coronavirus disease 2019 has developed into a dramatic pandemic with tremendous global impact. The receptor-binding motif (RBM) region of the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), binds to host angiotensin-converting enzyme 2 (ACE2) receptors for infection. As ACE2 receptors are highly conserved within vertebrate species, SARS-CoV-2 can infect significant animal species as well as human populations. An analysis of SARS-CoV-2 genotypes isolated from human and significant animal species was conducted to compare and identify mutation and adaptation patterns across different animal species. The phylogenetic data revealed seven distinct phylogenetic clades with no significant relationship between the clades and geographical locations. A high rate of variation within SARS-CoV-2 mink isolates implies that mink populations were infected before human populations. Positions of most single-nucleotide polymorphisms (SNPs) within the spike (S) protein of SARS-CoV-2 genotypes from the different hosts are mostly accumulated in the RBM region and highlight the pronounced accumulation of variants with mutations in the RBM region in comparison with other variants. These SNPs play a crucial role in viral transmission and pathogenicity and are keys in identifying other animal species as potential intermediate hosts of SARS-CoV-2. The possible roles in the emergence of new viral strains and the possible implications of these changes, in compromising vaccine effectiveness, deserve urgent considerations.


Asunto(s)
COVID-19/virología , Filogenia , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/clasificación , Genoma Viral , SARS-CoV-2/clasificación
2.
Amino Acids ; 55(1): 19-31, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36348073

RESUMEN

Plant viral pathogens cause damaging diseases in many agriculture systems, and emerging viral infections are a serious threat for providing adequate food to a continuously growing population. Recent studies of biogenic substances have provided new opportunities for producing novel antiviral agents. The present work has been conducted to evaluate the antiviral activity of quinoa (Chenopodium quinoa Willd.) seeds crude extract. The antiviral activity was retained in different buffer solutions of various pH ranges (5.2-8.5) and remained after the diafiltration process. The putative virus inhibitor was sensitive to treatment with sodium dodecyl sulfate and trichloroacetic acid. An antiviral protein with ~ 25 kDa molecular weight was isolated from the seed quinoa extract using ammonium sulfate precipitation, anion and cation exchange chromatography. The purified protein (Quinoin-I) significantly inhibited TMV on tobacco leaves with an IC50 value at a 6.81 µg/ml concentration. Enzyme activity assay revealed the RNase activity of Quinoin-I, and this feature was retained in the presence of ß-mercaptoethanol and ethylene diamine tetraacetic acid. This antiviral protein has been shown as a promising leading molecule for further development as a novel antiviral agent.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/química , Antivirales/farmacología , Semillas/química
3.
Microb Cell Fact ; 22(1): 39, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841778

RESUMEN

BACKGROUND: Virus-like particles are an interesting vector platform for vaccine development. Particularly, Hepatitis B virus core antigen has been used as a promising VLP platform. It is highly expressed in different recombinant expression systems, such as E. coli, and self-assembled in vitro. It effectively improves the immunogenicity of foreign antigenic epitopes on its surface. Various foreign antigens from bacteria, viruses, and protozoa can be genetically inserted into such nanoparticles. The effective immunogenicity due to VLP vaccines has been reported. However, no research has been performed on the SARS-CoV2 vaccine within this unique platform through genetic engineering. Considering the high yield of target proteins, low cost of production, and feasibility of scaling up, E. coli is an outstanding expression platform to develop such vaccines. Therefore, in this investigation, we planned to study and develop a unique HBc VLP-based vaccine against SARS-Cov2 utilizing the E. coli expression system due to its importance. RESULTS: Insertion of the selected epitope was done into the major immunodominant region (MIR) of truncated (149 residues) hepatitis B core capsid protein. The chimeric protein was constructed in PET28a+ and expressed through the bacterial E. coli BL21 expression system. However, the protein was expressed in inclusion body forms and extracted following urea denaturation from the insoluble phase. Following the extraction, the vaccine protein was purified using Ni2 + iminodiacetic acid (IDA) affinity chromatography. SDS-PAGE and western blotting were used to confirm the protein expression. Regarding the denaturation step, the unavoidable refolding process was carried out, so that the chimeric VLP reassembled in native conformation. Based on the transmission electron microscopy (TEM) analysis, the HBC VLP was successfully assembled. Confirming the assembled chimeric VLP, we explored the immunogenic effectivity of the vaccine through mice immunization with two-dose vaccination with and without adjuvant. The utilization of adjuvant was suggested to assess the effect of adjuvant on improving the immune elicitation of chimeric VLP-based vaccine. Immunization analysis based on anti-spike specific IgG antibody showed a significant increase in antibody production in harvested serum from immunized mice with HBc-VLP harboring antigenic epitope compared to HBc-VLP- and PBS-injected mice. CONCLUSIONS: The results approved the successful production and the effectiveness of the vaccine in terms of humoral IgG antibody production. Therefore, this platform can be considered a promising strategy for developing safe and reasonable vaccines; however, more complementary immunological evaluations are needed.


Asunto(s)
COVID-19 , Hepatitis B , Vacunas de Partículas Similares a Virus , Ratones , Animales , Epítopos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , ARN Viral/metabolismo , Inmunidad Humoral , Escherichia coli/genética , SARS-CoV-2 , Adyuvantes Inmunológicos/metabolismo , Ratones Endogámicos BALB C
4.
Biotechnol Appl Biochem ; 69(1): 30-40, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33179788

RESUMEN

The necessity and impact of SARS-CoV2 on the world's health have led to developing and producing practical and useful vaccines for this deadly respiratory virus. Since April 2020, a vaccine for the virus has been developed. Given that comorbidities such as diabetes, hypertension, and cardiovascular disease are more prone to viruses and the risk of infection, vaccines should be designed to protect against high-risk respiratory illnesses. Including SARS, MERS, influenza, and the SARS-CoV-2 provide a safe immune response. Here, we review the information and studies that have been done to help develop strategies and perspectives for producing a safe and ideal vaccine to prevent COVID-19 in normal people, especially at high-risk groups such as diabetes patients.


Asunto(s)
COVID-19 , Diabetes Mellitus , Vacunas contra la COVID-19 , Humanos , ARN Viral , SARS-CoV-2
5.
Biotechnol Lett ; 44(1): 45-57, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34837582

RESUMEN

After its emergence in late 2019 SARS-CoV-2 was declared a pandemic by the World Health Organization on 11 March 2020 and has claimed more than 2.8 million lives. There has been a massive global effort to develop vaccines against SARS-CoV-2 and the rapid and low cost production of large quantities of vaccine is urgently needed to ensure adequate supply to both developed and developing countries. Virus-like particles (VLPs) are composed of viral antigens that self-assemble into structures that mimic the structure of native viruses but lack the viral genome. Thus they are not only a safer alternative to attenuated or inactivated vaccines but are also able to induce potent cellular and humoral immune responses and can be manufactured recombinantly in expression systems that do not require viral replication. VLPs have successfully been produced in bacteria, yeast, insect and mammalian cell cultures, each production platform with its own advantages and limitations. Plants offer a number of advantages in one production platform, including proper eukaryotic protein modification and assembly, increased safety, low cost, high scalability as well as rapid production speed, a critical factor needed to control outbreaks of potential pandemics. Plant-based VLP-based viral vaccines currently in clinical trials include, amongst others, Hepatitis B virus, Influenza virus and SARS-CoV-2 vaccines. Here we discuss the importance of plants as a next generation expression system for the fast, scalable and low cost production of VLP-based vaccines.


Asunto(s)
Vacunas contra la COVID-19/biosíntesis , Plantas Modificadas Genéticamente/metabolismo , SARS-CoV-2/inmunología , Vacunas de Partículas Similares a Virus/biosíntesis , Antígenos Virales/genética , Antígenos Virales/metabolismo , Vacunas contra la COVID-19/economía , Vacunas contra la COVID-19/genética , Expresión Génica , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacunas de Partículas Similares a Virus/economía , Vacunas de Partículas Similares a Virus/genética , Vacunas Virales/biosíntesis , Vacunas Virales/genética
6.
Transgenic Res ; 30(3): 221-238, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33830423

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) together with CRISPR-associated (Cas) proteins have catalysed a revolution in genetic engineering. Native CRISPR-Cas systems exist in many bacteria and archaea where they provide an adaptive immune response through sequence-specific degradation of an invading pathogen's genome. This system has been reconfigured for use in genome editing, drug development, gene expression regulation, diagnostics, the prevention and treatment of cancers, and the treatment of genetic and infectious diseases. In recent years, CRISPR-Cas systems have been used in the diagnosis and control of viral diseases, for example, CRISPR-Cas12/13 coupled with new amplification techniques to improve the specificity of sequence-specific fluorescent probe detection. Importantly, CRISPR applications are both sensitive and specific and usually only require commonly available lab equipment. Unlike the canonical Cas9 which is guided to double-stranded DNA sites of interest, Cas13 systems target RNA sequences and thus can be employed in strategies directed against RNA viruses or for transcriptional silencing. Many challenges remain for these approach, including issues with specificity and the requirement for better mammalian delivery systems. In this review, we summarize the applications of CRISPR-Cas systems in controlling mammalian viral infections. Following necessary improvements, it is expected that CRISPR-Cas systems will be used effectively for such applications in the future.


Asunto(s)
Sistemas CRISPR-Cas/genética , Ingeniería Genética , Genoma/genética , Virosis/genética , Animales , Edición Génica , Humanos , Mamíferos , Virosis/terapia , Virosis/virología , Virus/genética , Virus/patogenicidad
7.
Physiol Mol Biol Plants ; 27(1): 11-27, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33627959

RESUMEN

Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00925-3.

8.
Microb Pathog ; 140: 103929, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31846744

RESUMEN

An antiviral protein, designated Opuntin B, was purified from Prickly Pear (Opuntia ficus-indica (L.) Miller) Cladode by heat treatment of the extract, protein precipitation by ammonium sulfate treatment followed by ion-exchange chromatography. Assessment of enzymatic activity of the purified protein showed that it degrades total plant genomic RNA, while causing electrophoretic mobility shifting of Cucumber mosaic virus (CMV) RNAs. However, heat-denatured viral RNA became sensitive to degradation upon treatment with antiviral protein. Opuntin B had no DNase activity on native and heat-denatured apricot genomic DNA, and on PCR-amplified coat protein gene of CMV. Using CMV as prey protein and Opuntin B as bait protein, no interaction was found between the antiviral protein and viral coat protein in far western dot blot analysis.


Asunto(s)
Antivirales/farmacología , Maleimidas , Opuntia/metabolismo , Fenoles , Ribonucleasas/metabolismo , Cucumovirus/efectos de los fármacos , Maleimidas/metabolismo , Maleimidas/farmacología , Fenoles/metabolismo , Fenoles/farmacología , Extractos Vegetales/farmacología , Virus de Plantas/efectos de los fármacos
9.
Theor Appl Genet ; 133(1): 87-102, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31570969

RESUMEN

KEY MESSAGE: Root transcriptome profiling of three soybean cultivars and a wild relative infected with soybean cyst nematode at migratory phase revealed differential resistance pathway responses between resistant and susceptible genotypes. The soybean cyst nematode (SCN), Heterodera glycines, is the most serious pathogen of soybean production throughout the world. Using resistant cultivars is the primary management strategy against SCN infestation. To gain insight into the still obscure mechanisms of genetic resistance to nematodes in different soybean genotypes, RNA-Seq profiling of the roots of Glycine max cv. Peking, Fayette, Williams 82, and a wild relative (Glycine soja PI 468916) was performed during SCN infection at the migratory phase. The analysis showed statistically significant changes of expression beginning at eight hours after inoculation in genes associated with defense mechanisms and pathways, such as the phenylpropanoid biosynthesis pathway, plant innate immunity and hormone signaling. Our results indicate the importance of the early plant response to migratory phase nematodes in pathogenicity determination. The transcriptome changes occurring during early SCN infection included a number of genes and pathways specific to the different resistant genotypes. We observed the most extensive resistant transcriptome reaction in PI 468916, where the resistant response was qualitatively different from that of commonly used G. max varieties.


Asunto(s)
Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Glycine max/genética , Glycine max/parasitología , Enfermedades de las Plantas/genética , Transcripción Genética , Tylenchoidea/fisiología , Animales , Vías Biosintéticas/genética , Mapeo Cromosómico , Susceptibilidad a Enfermedades , Etilenos/biosíntesis , Perfilación de la Expresión Génica , Ontología de Genes , Genes de Plantas , Filogenia , Enfermedades de las Plantas/parasitología , Propanoles/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal/genética , Factores de Transcripción/metabolismo
10.
Arch Virol ; 165(1): 169-178, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31773326

RESUMEN

Plant viruses can alter the behavior or performance of their arthropod vectors, either indirectly (through effects of virus infection on the host plant) or directly (from virus acquisition by the vector). Given the diversity of plant viruses and their arthropod vectors, the effects for any specific system are not possible to predict. Here, we present experimental evidence that acquisition of maize Iranian mosaic virus (MIMV, genus Nucleorhabdovirus, family Rhabdoviridae) modifies the biological traits of its insect vector, the small brown planthopper (SBPH) Laodelphax striatellus. MIMV is an economically important virus of maize and several other grass species. It is transmitted by SBPHs in a persistent-propagative manner. We evaluated the effects of MIMV acquisition by SBPH on its life history when reared on healthy barley plants (Hordeum vulgare). We conclude that 1) MIMV acquisition by SBPHs increases female fecundity, duration of the nymph stage, adult longevity, and survival of SBPHs, (2) the mortality rate and female-to-male sex ratio are reduced in MIMV-infected planthoppers, and (3) MIMV infection increases the concentration of some biochemical components of the infected plants, including carbohydrates, some amino acids, and total protein, which might influence the life traits of its insect vector. The results indicate the potential of MIMV to improve the ecological fitness of its vector, SBPH, through direct or indirect effects, with the potential to increase the spread of the virus.


Asunto(s)
Hemípteros/fisiología , Rhabdoviridae/fisiología , Zea mays/metabolismo , Zea mays/virología , Aminoácidos/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Femenino , Fertilidad , Hemípteros/virología , Insectos Vectores/fisiología , Insectos Vectores/virología , Longevidad , Masculino , Proteínas de Plantas/metabolismo , Virus de Plantas/fisiología
11.
Mol Plant Microbe Interact ; 31(12): 1337-1346, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29975161

RESUMEN

The beet cyst nematode (BCN) Heterodera schachtii causes serious damage and yield losses in numerous important crops worldwide. This study examines the efficacy of three types of transgenic Arabidopsis RNA interference (RNAi) lines to decrease the biological activity of this devastating nematode. The first RNAi construct (E1E2-RNAi) targets two nematode endoglucanase genes, which are involved in BCN pathogenicity, the second construct (MSP-RNAi) contains a fragment corresponding to the major sperm protein transcript necessary for BCN development and reproduction, and the third construct (E1E2MSP-RNAi) comprises all three target fragments. Transcript expression profiles of the target genes in all biological stages of the nematode were determined for the initial inoculated population and the resulting progeny. Bioassay data under indoor aseptic cultivation indicated that feeding on these RNAi lines did not affect pathogenic activity and reproductive capacity of the initial population, whereas inoculating the progeny into new transgenic plants corresponding with the lines from which they were recovered reduced the nematode penetration and the number of eggs per cyst. In addition, the male/female ratio increased more than the double, and the effects of RNAi continued in the second generation of the nematodes, because the progeny derived from E1E2-RNAi and E1E2MSP-RNAi lines showed an impaired ability to infect wild-type plants.


Asunto(s)
Arabidopsis/inmunología , Beta vulgaris/parasitología , Enfermedades de las Plantas/inmunología , Tylenchoidea/patogenicidad , Animales , Arabidopsis/genética , Arabidopsis/parasitología , Femenino , Masculino , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente , Interferencia de ARN , Razón de Masculinidad , Tylenchoidea/genética , Tylenchoidea/crecimiento & desarrollo , Virulencia
12.
Virus Genes ; 53(2): 266-274, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27900587

RESUMEN

Wheat dwarf virus (WDV) adversely affects cereal production in Asia, Europe, and North Africa. In this study, sequences of several WDV isolates from Iran which is located in the Fertile Crescent were analyzed. Analysis revealed a new geographic cluster for WDV-Wheat from Iran. Recombination analysis demonstrated the existence of several breakpoints in different regions of the viral genome. Data analysis demonstrated that WDV-Barley has an older history and lower diversity than WDV-Wheat. Sequence analysis identified a rare occasion of a co-infection of wheat with WDV-Wheat and WDV-Barley.


Asunto(s)
Geminiviridae/genética , Genoma Viral/genética , Enfermedades de las Plantas/genética , Triticum/virología , Asia , Europa (Continente) , Geminiviridae/clasificación , Geminiviridae/patogenicidad , Variación Genética , Hordeum/genética , Hordeum/virología , Irán , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/virología , Triticum/genética
13.
Plant Dis ; 100(1): 66-71, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30688578

RESUMEN

Citrus ringspot is a graft-transmissible disease, and at least two taxonomically distinct viral species are associated with this syndrome: Citrus psorosis virus (CPsV) and Indian citrus ringspot virus (ICRSV). Neither of these two viruses was detected, however, by serological or molecular assays in symptomatic tissues from citrus trees in southern Iran, where the ringspot syndrome is widespread. By contrast, electron microscopy and molecular assays revealed the presence of a rhabdovirus-like virus, which was graft transmitted to several citrus species and mechanically to herbaceous hosts. Virus particles were bacilliform and resembled rhabdovirus nucleocapsids deprived of the lipoprotein envelope. Partial sequences of the viral nucleoprotein and RNA polymerase genes showed a distant genetic relatedness with cytorhabdoviruses. This virus appears to be a novel species, for which the name Iranian citrus ringspot-associated virus (IrCRSaV) is suggested.

14.
Vaccine X ; 16: 100440, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38283623

RESUMEN

The global poultry industry plays a pivotal role in providing eggs and meat for human consumption. However, outbreaks of viral disease, especially Newcastle virus disease (NDV), within poultry farms have detrimental effects on various zootechnical parameters, such as body weight gain, feed intake, feed conversion ratio, as well as the quality of egg and meat production. Cases of vaccine failure have been reported in regions where highly pathogenic strains of NDV are prevalent. To tackle this challenge, virus-like particles (VLPs) have emerged as a potential solution. VLPs closely resemble natural viruses, offering biocompatibility and immune-stimulating properties that make them highly promising for therapeutic applications against NDV. Hence, this review emphasizes the significance of NDV and the need for effective treatments. The manuscript will contain several key aspects, starting with an exploration of the structure and properties of NDV. Subsequently, the paper will delve into the characteristics and benefits of VLPs compared to conventional drug delivery systems. A comprehensive analysis of VLPs as potential vaccine candidates targeting NDV will be presented, along with a discussion on strategies for loading cargo into these NDV-targeting VLPs. The review will also examine various expression systems utilized in the production of NDV-targeting VLPs. Additionally, the manuscript will address future prospects and challenges in the field, concluding with recommendations for further research.

15.
Front Pharmacol ; 15: 1327820, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808256

RESUMEN

CDK9 (cyclin-dependent kinase 9) plays a significant role in numerous pathological conditions, such as HIV-1 infection and cancer. The interaction between CDK9 and cyclin T1 is crucial for maintaining the kinase's active state. Therefore, targeting this protein-protein interaction offers a promising strategy for inhibiting CDK9. In this study, we aimed to design and characterize a library of mutant peptides based on the binding region of cyclin T1 to CDK9. Using Osprey software, a total of 7,776 mutant peptides were generated. After conducting a comprehensive analysis, three peptides, namely, mp3 (RAADVEGQRKRRE), mp20 (RAATVEGQRKRRE), and mp29 (RAADVEGQDKRRE), were identified as promising inhibitors that possess the ability to bind to CDK9 with high affinity and exhibit low free binding energy. These peptides exhibited favorable safety profiles and displayed promising dynamic behaviors. Notably, our findings revealed that the mp3 and mp29 peptides interacted with a conserved sequence in CDK9 (residues 60-66). In addition, by designing the structure of potential peptides in the plasmid vector pET28a (+), we have been able to pave the way for facilitating the process of their recombinant production in an Escherichia coli expression system in future studies. Predictions indicated good solubility upon overexpression, further supporting their potential for downstream applications. While these results demonstrate the promise of the designed peptides as blockers of CDK9 with high affinity, additional experimental studies are required to validate their biological activity and assess their selectivity. Such investigations will provide valuable insights into their therapeutic potential and pave the way for the future development of peptide-based inhibitors targeting the CDK9-cyclin T1 complex.

16.
Sci Rep ; 13(1): 2091, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747030

RESUMEN

The ribosome inactivating proteins (RIPs) efficiently decrease the microbial infections in plants. Momordica charantia MAP30 is a type I RIP that has not been investigated against plant viruses or bacteriophages. To evaluate of these activities, the recombinant MAP30 (rMAP30) was produced in the hairy roots of Nicotiana tabacum. Inoculation of 3 µg of transgenic total protein or 0.6 µg of rMAP30 against 0.1 µg of TMV reduced the leaf necrotic spots to 78.23% and 82.72%, respectively. The treatment of 0.1 µg of CMV with rMAP30 (0.6 µg) showed the reduction in the leaf necrotic spots to 85.8%. While the infection was increased after rMAP30 dilution. In the time interval assays, the leaves were first inoculated with 1 µg of rMAP30 or 0.1 µg of purified TMV or CMV agent for 6 h, then virus or protein was applied in order. This led the spot reduction to 35.22% and 67% for TMV, and 38.61% and 55.31% for CMV, respectively. In both the pre- and co-treatments of 1:10 or 1:20 diluted bacteriophage with 15 µg of transgenic total protein, the number and diameter of the plaques were reduced. The results showed that the highest inhibitory effect was observed in the pre-treatment assay of bacteriophage with transgenic total protein for 24 h. The decrease in the growth of bacteriophage caused more growth pattern of Escherichia coli. The results confirm that rMAP30 shows antibacterial activity against Streptococcus aureus and E. coli, antifungal activity against Candida albicans, and antiviral activity against CMV and TMV. Moreover, rMAP30 exhibits anti-phage activity for the first time. According to our findings, rMAP30 might be a valuable preservative agent in foods and beverages in the food industry as well as an antiviral and antimicrobial mixture in agriculture.


Asunto(s)
Bacteriófagos , Infecciones por Citomegalovirus , Virus de Plantas , Humanos , Proteínas Inactivadoras de Ribosomas Tipo 2/metabolismo , Saporinas/metabolismo , Escherichia coli/metabolismo , Proteínas Inactivadoras de Ribosomas/farmacología , Antivirales/farmacología , Proteínas de Plantas/metabolismo
17.
PLoS One ; 17(5): e0267961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35536789

RESUMEN

Natural compounds are proper tools for inhibiting cancer cell proliferation. Hence, the search for these ligands of overexpressed receptors in breast cancer has been a competitive challenge recently and opens new avenues for drug discovery. In this research, we have investigated molecular interactions between natural products and overexpressed receptors in breast cancer using molecular docking and dynamic simulation approaches followed by extraction of the best ligand from Citrus limetta and developing for nanoscale encapsulation composed of soy lecithin using a sonicator machine. The encapsulation process was confirmed by DLS and TEM analyses. Anticancer activity was also examined using MTT method. Among the investigated natural compounds, hesperidin was found to bind to specific targets with stronger binding energy. The molecular dynamics results indicated that the hesperidin-MCL-1 complex is very stable at 310.15 K for 200 ns. The RP-HPLC analysis revealed that the purity of extracted hesperidin was 98.8% with a yield of 1.72%. The results of DLS and TEM showed a strong interaction between hesperidin and lecithin with an entrapped efficiency of 92.02 ± 1.08%. Finally, the cytotoxicity effect of hesperidin was increased against the MDA-MB-231 cell line with an IC50 value of 62.93 µg/mL after encapsulation, whereas no significant effect against the MCF10A cell line. We showed for the first time that hesperidin is a flexible and strong ligand for the MCL-1 receptor. Also, it has the in vitro ability to kill the MDA-MB-231 cell lines without having a significant effect on the MCF10A cell lines. Therefore, hesperidin could be used as a food ingredient to generate functional foods.


Asunto(s)
Productos Biológicos , Neoplasias de la Mama , Hesperidina , Productos Biológicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Hesperidina/química , Hesperidina/farmacología , Humanos , Lecitinas , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo
18.
Plants (Basel) ; 11(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35214836

RESUMEN

Environmental stresses adversely affect crop growth and yield, resulting in major losses to plants. These stresses occur simultaneously in nature, and we therefore conducted a meta-analysis in this study to identify differential and shared genes, pathways, and transcriptomic mechanisms involved in Arabidopsis response to biotic and abiotic stresses. The results showed a total of 436/21 significant up-/downregulated differentially expressed genes (DEGs) in response to biotic stresses, while 476 and 71 significant DEGs were respectively up- and downregulated in response to abiotic stresses in Arabidopsis thaliana. In addition, 21 DEGs (2.09%) were commonly regulated in response to biotic and abiotic stresses. Except for WRKY45 and ATXTH22, which were respectively up-/down- and down-/upregulated in response to biotic and abiotic stresses, other common DEGs were upregulated in response to all biotic and abiotic treatments. Moreover, the transcription factors (TFs) bHLH, MYB, and WRKY were the common TFs in response to biotic and abiotic stresses. In addition, ath-miR414 and ath-miR5658 were identified to be commonly expressed in response to both biotic and abiotic stresses. The identified common genes and pathways during biotic and abiotic stresses may provide potential candidate targets for the development of stress resistance breeding programs and for the genetic manipulation of crop plants.

19.
3 Biotech ; 12(3): 69, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35223355

RESUMEN

MicroRNAs (miRNAs) play key regulatory roles in the plant's response to biotic and abiotic stresses and have fundamental functions in plant-virus interactions. The study of changes in miRNAs in response to virus infection can provide molecular details for a better understanding of virus-host interactions. Maize Iranian mosaic virus (MIMV) infects maize and certain other poaceous plants but miRNA changes in response to MIMV infection are unknown. In the present study, we compared the miRNA profiles of MIMV-infected and uninfected maize and characterized their predicted roles in response to the virus. Small RNA sequencing of maize identified 257 conserved miRNAs of 26 conserved families in uninfected and MIMV-infected maize libraries. Among them, miR395, miR166 and miR156 family members were highly represented. Small RNA data were confirmed using RT-qPCR. In addition, 33 potential novel miRNAs were predicted. The data show that 13 miRNAs were up-regulated and 113 were down-regulated in response to MIMV infection. Several of those miRNAs are known to be important in the response to plant pathogens. To determine the potential roles of individual miRNAs in response to MIMV, miRNA targets, predicted interactions with circular RNAs and comparative transcriptome data were analyzed. The expression profiles of different miRNAs in response to MIMV provide novel insights into the roles of miRNAs in the interaction between MIMV and maize plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-022-03134-1.

20.
Biology (Basel) ; 11(8)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36009782

RESUMEN

Following a pathogen attack, plants defend themselves using multiple defense mechanisms to prevent infections. We used a meta-analysis and systems-biology analysis to search for general molecular plant defense responses from transcriptomic data reported from different pathogen attacks in Arabidopsis thaliana. Data from seven studies were subjected to meta-analysis, which revealed a total of 3694 differentially expressed genes (DEGs), where both healthy and infected plants were considered. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis further suggested that the DEGs were involved in several biosynthetic metabolic pathways, including those responsible for the biosynthesis of secondary metabolites and pathways central to photosynthesis and plant-pathogen interactions. Using network analysis, we highlight the importance of WRKY40, WRKY46 and STZ, and suggest that they serve as major points in protein-protein interactions. This is especially true regarding networks of composite-metabolic responses by pathogens. In summary, this research provides a new approach that illuminates how different mechanisms of transcriptome responses can be activated in plants under pathogen infection and indicates that common genes vary in their ability to regulate plant responses to the pathogens studied herein.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA