Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
AAPS PharmSciTech ; 25(7): 204, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237789

RESUMEN

Benign hyperplasia (BHP) is a common disorder that affects men over the age of 60 years. Transurethral resection of the prostate (TURP) is the gold standard for operative treatment, but a range of drugs are also available to improve quality of life and to reduce BHP-associated urinary tract infections and complications. Darifenacin, an anti-muscarinic agent, has been found effective for relieving symptoms of overactive bladder associated with BHP, but the drug has poor solubility and bioavailability, which are major challenges in product development. An inorganic/organic bio-composite with gastric pH-resistant property was synthesized for the targeted oral delivery of Darifenacin to the lower gastrointestinal tract (GIT). This development was accomplished through co-precipitation of calcium carbonate in quince seed-based mucilage. The FTIR, XRD, DSC, and TGA results showed good drug-polymer compatibility, and the SEM images showed calcite formation in the quince hydrogel system. After 72 h, the drug release of 34% and 75% were observed in acidic (0.1N HCl) and 6.8 pH phosphate buffer, respectively. A restricted/less drug was permeated through gastric membrane (21.8%) as compared to permeation through intestinal membrane (65%.) The developed composite showed significant reduction in testosterone-induced prostatic hyperplasia (2.39 ± 0.12***) as compared to untreated diseased animal group. No sign of organ toxicity was observed against all the developed composites. In this study, we developed an inorganic-organic composite system that is highly biocompatible and effective for targeting the lower GIT, thereby avoiding the first-pass metabolism of darifenacin.


Asunto(s)
Benzofuranos , Pirrolidinas , Solubilidad , Administración Oral , Animales , Benzofuranos/administración & dosificación , Benzofuranos/farmacocinética , Benzofuranos/química , Benzofuranos/farmacología , Masculino , Pirrolidinas/química , Pirrolidinas/administración & dosificación , Liberación de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Ratas , Hiperplasia Prostática/tratamiento farmacológico , Antagonistas Muscarínicos/administración & dosificación , Antagonistas Muscarínicos/farmacocinética , Disponibilidad Biológica , Carbonato de Calcio/química , Concentración de Iones de Hidrógeno , Hidrogeles/química , Polímeros/química
2.
J Cell Physiol ; 236(3): 1658-1676, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32841373

RESUMEN

The amino acid sequence enriched with proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) is a signal-transducing agent providing unique features to its substrate nuclear proteins (PEST-NPs). The PEST motif is responsible for particular posttranslational modifications (PTMs). These PTMs impart distinct properties to PEST-NPs that are responsible for their activation/inhibition, intracellular localization, and stability/degradation. PEST-NPs participate in cancer metabolism, immunity, and protein transcription as oncogenes or as tumor suppressors. Gene-based therapeutics are getting the attention of researchers because of their cell specificity. PEST-NPs are good targets to explore as cancer therapeutics. Insights into PTMs of PEST-NPs demonstrate that these proteins not only interact with each other but also recruit other proteins to/from their active site to promote/inhibit tumors. Thus, the role of PEST-NPs in cancer biology is multivariate. It is hard to obtain therapeutic objectives with single gene therapy. An especially designed combination gene therapy might be a promising strategy in cancer treatment. This review highlights the multifaceted behavior of PEST-NPs in cancer biology. We have summarized a number of studies to address the influence of structure and PEST-mediated PTMs on activation, localization, stability, and protein-protein interactions of PEST-NPs. We also recommend researchers to adopt a pragmatic approach in gene-based cancer therapy.


Asunto(s)
Terapia Genética , Neoplasias/genética , Neoplasias/terapia , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Carcinogénesis/patología , Humanos , Neoplasias/patología , Mapas de Interacción de Proteínas
3.
Acta Pol Pharm ; 72(3): 607-14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26642669

RESUMEN

The aim of the work was to examine the influence of gender on pharmacokinetics of silymarin; a basic constituent of medicinal herb "milk thistle" (Silybum marianum). The presented work is the extension of published work of Usman et al. (16). The comparative parallel design pharmacokinetic study was conducted in Pakistani healthy volunteers (male and female) receiving a single 200 mg oral dose of silymarin. Sixteen subjects (8 males and 8 females) were enrolled and completed the 12 h study. Blood screening was done on HPLC and the pharmacokinetic parameters were calculated by APO, 3.2 Ver. software using non-compartmental and two compartment model approaches. A significant difference (p < 0.05) was observed in almost all calculated pharmacokinetic parameters of silymarin in male and female. Clinically, the silymarin has been underestimated in the previous study. Gender based clinical investigations should be directed in the future on other flavono-lignans of 'milk thistle' as well.


Asunto(s)
Silimarina/farmacocinética , Adolescente , Adulto , Área Bajo la Curva , Femenino , Humanos , Masculino , Persona de Mediana Edad , Silybum marianum , Modelos Biológicos
4.
Polym Bull (Berl) ; 80(6): 6965-6988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35966180

RESUMEN

In this study, an inorganic-organic composite system was developed through biomineralization of calcium carbonate in the quince-seed mucilage-based hydrogel. Drug-polymer interactions were studied by FTIR, DSC, XRD and SEM analysis. The water absorption capacity was calculated by swelling index. Drug release was determined at various pH. Several in vitro kinetic models were applied to observe drug release behaviour. Studies of drug-polymer interactions and particle flow characteristics of the developed composite material have shown that there is good compatibility between drug and the excipients. The XRD and SEM results confirmed calcite polymorphs in the developed composite material. Thermograms showed that the developed composite material was heat stable. A restricted drug release was observed in an acidic medium (pH 1.2). A controlled drug release was depicted from the developed system at pH 6.8. The drug release mechanism of Super Case II was suggested. The developed system was considered to be an effective drug carrier for colon targeted oral delivery of non-steroidal anti-inflammatory drugs (NSAIDs) to avoid gastric irritation and risk of ulceration. Graphical abstract: An illustration of extraction of quince hydrogel and development of calcium carbonate-quince (CaCO3-Q) composite system; QSM = Quince seed mucilage. Supplementary Information: The online version contains supplementary material available at 10.1007/s00289-022-04400-1.

5.
Transl Oncol ; 38: 101770, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37716259

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S) has been identified as the third gaseous signaling molecule. Endogenous H2S plays a key role in the progression of various types of cancer. However, the effect of endogenous H2S on the growth of esophageal cancer (EC) remains unknown. METHODS: In this study, three kinds of H2S-producing enzymes inhibitors, DL-propargylglycine (PAG, inhibitor of cystathionine-γ-lyase), aminooxyacetic acid (AOAA, inhibitor of cystathionine-ß-synthase), and L-aspartic acid (L-Asp, inhibitor of 3-mercaptopyruvate sulfurtransferase) were used to determine the role of endogenous H2S in the growth of EC9706 and K450 human EC cells. RESULTS: The results indicated that the combination (PAG+AOAA+L-Asp) group showed higher inhibitory effects on the viability, proliferation, migration, and invasion of EC cells than PAG, AOAA, and L-Asp group. Inhibition of endogenous H2S promoted apoptosis via activation of mitogen-activated protein kinase pathway in EC cells. Endogenous H2S suppression triggered pyroptosis of EC cells by activating reactive oxygen species-mediated nuclear factor-κB signaling pathway. In addition, the combine group showed its more powerful growth-inhibitory effect on the growth of human EC xenograft tumors in nude mice without obvious toxicity. CONCLUSION: Our results indicate that inhibition of endogenous H2S production can significantly inhibit human EC cell growth via promotion of apoptosis and pyroptosis. Endogenous H2S may be a promising therapeutic target in EC cells. Novel inhibitors for H2S-producing enzymes can be designed and developed for EC treatment.

6.
Int J Biol Sci ; 17(1): 73-88, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390834

RESUMEN

In recent years, a vast number of potential cancer therapeutic targets have emerged. However, developing efficient and effective drugs for the targets is of major concern. Hydrogen sulfide (H2S), one of the three known gasotransmitters, is involved in the regulation of various cellular activities such as autophagy, apoptosis, migration, and proliferation. Low production of H2S has been identified in numerous cancer types. Treating cancer cells with H2S donors is the common experimental technique used to improve H2S levels; however, the outcome depends on the concentration/dose, time, cell type, and sometimes the drug used. Both natural and synthesized donors are available for this purpose, although their effects vary independently ranging from strong cancer suppressors to promoters. Nonetheless, numerous signaling pathways have been reported to be altered following the treatments with H2S donors which suggest their potential in cancer treatment. This review will analyze the potential of H2S donors in cancer therapy by summarizing key cellular processes and mechanisms involved.


Asunto(s)
Gasotransmisores/metabolismo , Sulfuro de Hidrógeno/metabolismo , Neoplasias/metabolismo , Sulfuros/uso terapéutico , Animales , Progresión de la Enfermedad , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico
7.
Biomolecules ; 11(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062820

RESUMEN

Respiratory diseases are leading causes of death and disability around the globe, with a diverse range of health problems. Treatment of respiratory diseases and infections has been verified to be thought-provoking because of the increasing incidence and mortality rate. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in an extensive range of cellular functions, and physiological and pathological processes in a variety of diseases, including respiratory diseases. Recently, the therapeutic potential of H2S for respiratory diseases has been widely investigated. H2S plays a vital therapeutic role in obstructive respiratory disease, pulmonary fibrosis, emphysema, pancreatic inflammatory/respiratory lung injury, pulmonary inflammation, bronchial asthma and bronchiectasis. Although the therapeutic role of H2S has been extensively studied in various respiratory diseases, a concrete literature review will have an extraordinary impact on future therapeutics. This review provides a comprehensive overview of the effective role of H2S in respiratory diseases. Besides, we also summarized H2S production in the lung and its metabolism processes in respiratory diseases.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Enfermedades Respiratorias/tratamiento farmacológico , Sulfuros/uso terapéutico , Animales , Ensayos Clínicos como Asunto , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Enfermedades Respiratorias/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfuros/farmacología
8.
Front Pharmacol ; 11: 564281, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33364941

RESUMEN

Hydrogen sulfide (H2S) plays a key role in the regulation of physiological processes in mammals. The decline in H2S level has been reported in numerous renal disorders. In animal models of renal disorders, treatment with H2S donors could restore H2S levels and improve renal functions. H2S donors suppress renal dysfunction by regulating autophagy, apoptosis, oxidative stress, and inflammation through multiple signaling pathways, such as TRL4/NLRP3, AMP-activated protein kinase/mammalian target of rapamycin, transforming growth factor-ß1/Smad3, extracellular signal-regulated protein kinases 1/2, mitogen-activated protein kinase, and nuclear factor kappa B. In this review, we summarize recent developments in the effects of H2S donors on the treatment of common renal diseases, including acute/chronic kidney disease, renal fibrosis, unilateral ureteral obstruction, glomerulosclerosis, diabetic nephropathy, hyperhomocysteinemia, drug-induced nephrotoxicity, metal-induced nephrotoxicity, and urolithiasis. Novel H2S donors can be designed and applied in the treatment of common renal diseases.

9.
Int J Pharm ; 556: 236-245, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30553956

RESUMEN

In present investigation, gelatin-based (AA-co-AMPS) hydrogels were prepared using N, N'-Methylenebisacrylamide (MBA) as a cross-linker and ammonium per sulfate (APS) as an initiator. The successful crosslinking and network formation was confirmed by Fourier transform infrared spectroscopy (FT IR). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) investigations proved the higher thermal stability and successful entrapment of oxaliplatin (OXP) in the polymeric network. X-ray diffraction (XRD) confirmed the loss in crystallinity of the drug after loading in the hydrogel. Scanning electron microscopy (SEM) revealed the porous surface of the hydrogel. The newly formed hydrogels were responsive to change in pH. The swelling, drug loading and drug release was increased with increase in concentration of acrylic acid (AA) while gelatin and 2-acrylamido 2-methylpronesulfonic acid (AMPS) were found to act inversely. The in-vitro enzymatic degradation study showed that the blank hydrogels were more stable against the blank PBS than the collagenase and lysozyme. MTT-assay proved that the blank hydrogels were cyto-compatible while free OXP as well as OXP-loaded hydrogels showed dose dependent controlled cytotoxicity against Vero, MCF-7 and HCT-116 cell lines. The preliminary safety evaluation and oral tolerability showed that the hydrogel suspension was biocompatible and well tolerable upto 4000 mg/kg of body weight without causing any hematological or histopathological changes in rabbits.


Asunto(s)
Antineoplásicos/administración & dosificación , Colon/metabolismo , Gelatina/química , Oxaliplatino/administración & dosificación , Acrilamidas/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Rastreo Diferencial de Calorimetría , Chlorocebus aethiops , Neoplasias del Colon/tratamiento farmacológico , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Femenino , Células HCT116 , Humanos , Hidrogeles , Concentración de Iones de Hidrógeno , Células MCF-7 , Masculino , Microscopía Electrónica de Rastreo , Oxaliplatino/química , Oxaliplatino/farmacología , Conejos , Espectroscopía Infrarroja por Transformada de Fourier , Células Vero
10.
Cancer Med ; 8(14): 6335-6343, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31487123

RESUMEN

Polypeptide sequences enriched with proline (P), glutamic acid (E), aspartic acid (D) and serine (S)/ threonine (T) (PEST) have been reported to be the most abundant and frequently distributed at the cellular level. There is growing evidence that PEST sequences act as proteolytic recognition signals for degradation of residual proteins which is critical for activation or deactivation of regulatory proteins involved in cellular signaling pathways of cell growth, differentiation, stress responses and physiological death. A PEST containing nuclear protein (PCNP) was demonstrated as a tumor suppressor in a neuroblastoma cancer model and tumor promoter in lung adenocarcinoma cancer model. Its unique properties like ubiquitination by NIRF, co-localization with NIRF in nucleus and tumor progression attract the attention of researchers. PCNP was reported to be ubiquitinated by ring finger protein NIRF in E3 ligase manner and as modulator of MAPK and PI3K/AKT/mTOR signaling pathways. In this review, we summarize PCNP linked DNA damage response, Post translational modifications, and transportation to address initiation, prognosis, and resistance of tumor cells in terms of cell cycle regulation, transcription and apoptosis. Hence, we demonstrate PCNP as a novel target in cancer diagnosis and treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencia de Aminoácidos , Ciclo Celular/genética , Cromatina/genética , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología , Proteínas Nucleares/química , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Transcripción Genética , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA