Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mod Pathol ; 36(6): 100130, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933394

RESUMEN

Intraductal carcinoma (IDC) of the prostate is often associated with concurrent high-grade invasive prostate cancer (PCa) and poor clinical outcomes. In this context, IDC is thought to represent the retrograde spread of invasive prostatic adenocarcinoma into the acini and ducts. Prior studies have demonstrated a concordance of PTEN loss and genomic instability between the IDC and high-grade invasive components of PCa, but larger genomic association studies to solidify our understanding of the relationship between these 2 lesions are lacking. Here, we evaluate the genomic relationship between duct-confined (high-grade prostatic intraepithelial neoplasia and IDC) and invasive components of high-grade PCa using genetic variants generated by whole exome sequencing. High-grade prostatic intraepithelial neoplasia and IDC were laser-microdissected, and PCa and nonneoplastic tissue was manually dissected from 12 radical prostatectomies. A targeted next-generation sequencing panel was used to identify disease-relevant variants. Additionally, the degree of overlap between adjacent lesions was determined by comparing exome-wide variants detected using whole exome sequencing data. Our results demonstrate that IDC and invasive high-grade PCa components show common genetic variants and copy number alterations. Hierarchical clustering of genome-wide variants suggests that in these tumors, IDC is more closely related to the high-grade invasive components of the tumor compared with high-grade prostatic intraepithelial neoplasia. In conclusion, this study reinforces the concept that, in the context of high-grade PCa, IDC likely represents a late event associated with tumor progression.


Asunto(s)
Carcinoma Intraductal no Infiltrante , Neoplasia Intraepitelial Prostática , Neoplasias de la Próstata , Masculino , Humanos , Neoplasia Intraepitelial Prostática/genética , Neoplasia Intraepitelial Prostática/patología , Neoplasias de la Próstata/patología , Próstata/patología , Carcinoma Intraductal no Infiltrante/patología , Prostatectomía
2.
Am J Physiol Renal Physiol ; 321(6): F715-F739, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34632812

RESUMEN

Kidneys, one of the vital organs in our body, are responsible for maintaining whole body homeostasis. The complexity of renal function (e.g., filtration, reabsorption, fluid and electrolyte regulation, and urine production) demands diversity not only at the level of cell types but also in their overall distribution and structural framework within the kidney. To gain an in depth molecular-level understanding of the renal system, it is imperative to discern the components of kidney and the types of cells residing in each of the subregions. Recent developments in labeling, tracing, and imaging techniques have enabled us to mark, monitor, and identify these cells in vivo with high efficiency in a minimally invasive manner. In this review, we summarize different cell types, specific markers that are uniquely associated with those cell types, and their distribution in the kidney, which altogether make kidneys so special and different. Cellular sorting based on the presence of certain proteins on the cell surface allowed for the assignment of multiple markers for each cell type. However, different studies using different techniques have found contradictions in cell type-specific markers. Thus, the term "cell marker" might be imprecise and suboptimal, leading to uncertainty when interpreting the data. Therefore, we strongly believe that there is an unmet need to define the best cell markers for a cell type. Although the compendium of renal-selective marker proteins presented in this review is a resource that may be useful to researchers, we acknowledge that the list may not be necessarily exhaustive.


Asunto(s)
Biomarcadores/metabolismo , Enfermedades Renales/metabolismo , Riñón/metabolismo , Animales , Humanos , Riñón/patología , Riñón/fisiopatología , Enfermedades Renales/diagnóstico , Enfermedades Renales/fisiopatología , Enfermedades Renales/terapia , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Túbulos Renales/metabolismo , Túbulos Renales/patología , Túbulos Renales/fisiopatología , Valor Predictivo de las Pruebas , Pronóstico
3.
Cell Microbiol ; 22(2): e13133, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31658406

RESUMEN

Studies have successfully elucidated the mechanism of action of several effector domains that comprise the multifunctional-autoprocessing repeats-in-toxins (MARTX) toxins of Vibrio vulnificus. However, the biochemical linkage between the cysteine proteolytic activity of Makes Caterpillars Floppy (MCF)-like effector and its cellular effects remains unknown. In this study, we identify the host cell factors that activate in vivo and in vitro MCF autoprocessing as adenosine diphosphate (ADP)-Ribosylation Factor 1 (ARF1) and ADP-Ribosylation Factor 3 (ARF3). Autoprocessing activity is enhanced when ARF1 is in its active [guanosine triphosphate (GTP)-bound] form compared to the inactive [guanosine diphosphate (GDP)-bound] form. Subsequent to auto-cleavage, MCF is acetylated on its exposed N-terminal glycine residue. Acetylation apparently does not dictate subcellular localization as MCF is found localized throughout the cell. However, the cleaved form of MCF gains the ability to bind to the specialized lipid phosphatidylinositol 5-phosphate enriched in Golgi and other membranes necessary for endocytic trafficking, suggesting that a fraction of MCF may be subcellularly localized. Traditional thin-section electron microscopy, high-resolution cryoAPEX localization, and fluorescent microscopy show that MCF causes Golgi dispersal resulting in extensive vesiculation. In addition, host mitochondria are disrupted and fragmented. Mass spectrometry analysis found no reproducible modifications of ARF1 suggesting that ARF1 is not post-translationally modified by MCF. Further, catalytically active MCF does not stably associate with ARF1. Our data indicate not only that ARF1 is a cross-kingdom activator of MCF, but also that MCF may mediate cytotoxicity by directly targeting another yet to be identified protein. This study begins to elucidate the biochemical activity of this important domain and gives insight into how it may promote disease progression.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Toxinas Bacterianas/metabolismo , Aparato de Golgi/metabolismo , Vibrio vulnificus/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Procesamiento Proteico-Postraduccional , Transporte de Proteínas
4.
Cell Microbiol ; 17(10): 1494-509, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25912102

RESUMEN

The multifunctional-autoprocessing repeats-in-toxin (MARTX(Vv)) toxin that harbours a varied repertoire of effector domains is the primary virulence factor of Vibrio vulnificus. Although ubiquitously present among Biotype I toxin variants, the 'Makes caterpillars floppy-like' effector domain (MCF(Vv)) is previously unstudied. Using transient expression and protein delivery, MCF(Vv) and MCF(Ah) from the Aeromonas hydrophila MARTX(Ah)) toxin are shown for the first time to induce cell rounding. Alanine mutagenesis across the C-terminal subdomain of MCF(Vv) identified an Arg-Cys-Asp (RCD) tripeptide motif shown to comprise a cysteine protease catalytic site essential for autoprocessing of MCF(Vv). The autoprocessing could be recapitulated in vitro by the addition of host cell lysate to recombinant MCF(Vv), indicating induced autoprocessing by cellular factors. The RCD motif is also essential for cytopathicity, suggesting autoprocessing is essential first to activate the toxin and then to process a cellular target protein resulting in cell rounding. Sequence homology places MCF(Vv) within the C58 cysteine protease family that includes the type III secretion effectors YopT from Yersinia spp. and AvrPphB from Pseudomonas syringae. However, the catalytic site RCD motif is unique compared with other C58 peptidases and is here proposed to represent a new subgroup of autopeptidase found within a number of putative large bacterial toxins.


Asunto(s)
Aeromonas hydrophila/metabolismo , Toxinas Bacterianas/toxicidad , Aeromonas hydrophila/genética , Secuencias de Aminoácidos , Autólisis , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Dominio Catalítico , Línea Celular , Forma de la Célula/efectos de los fármacos , Análisis por Conglomerados , Proteasas de Cisteína/química , Proteasas de Cisteína/genética , Análisis Mutacional de ADN , Humanos , Mutagénesis Sitio-Dirigida , Filogenia , Estructura Terciaria de Proteína , Proteolisis , Homología de Secuencia de Aminoácido
5.
J Med Syst ; 40(3): 63, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26671061

RESUMEN

The main objective of the paper is to implement Savitzky Golay Smoothing Filter (SGSF) so as to apply in pre-processing of real time smart medical diagnostic systems. As very important information of EEG and ECG waveforms lies in the peak of the signal, hence it becomes absolutely necessary to filter noise and artifacts from the signal. The implemented filter should be able to reject the noise efficiently along with the least distortion from the original signal. The shape preserving characteristics of the filter are determined by introducing different noise levels in the signal. The designed filter is tested on synthetic signals of EEG and ECG by adding different types of noise and the performance is analysed on various parameters, i.e., SNR, SSNR, SNRI, MSE, COR and signal distortion of the final output. The smoothing performance comparison of SGSF with the most commonly used Moving Average Filter (MAF) proves that SGSF is more efficient. Hence it is suggested that MAF can be replaced by SGSF. For real time issues, it is further implemented on reconfigurable architectures so as to achieve high speed, low cost, low power consumption and less area. Therefore SGSF is realized on FPGA platform to combine the advantages of both. Real time EEG and ECG signals are also considered for experimentation. The experimental results show that the proposed methodology (FPGA-SGSF) significantly reduces the processing time and preserves the actual features of the signal.


Asunto(s)
Electrocardiografía/métodos , Electroencefalografía/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Sistemas de Computación , Humanos , Reproducibilidad de los Resultados
6.
Infect Immun ; 83(11): 4392-403, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26351282

RESUMEN

The multifunctional-autoprocessing repeats-in-toxin (MARTXVv) toxin of Vibrio vulnificus plays a significant role in the pathogenesis of this bacterium through delivery of up to five effector domains to the host cells. Previous studies have established that the MARTXVv toxin is linked to V. vulnificus dependent induction of apoptosis, but the region of the large multifunction protein essential for this activity was not previously identified. Recently, we showed that the Makes Caterpillar Floppy-like MARTX effector domain (MCFVv) is an autoproteolytic cysteine protease that induces rounding of various cell types. In this study, we demonstrate that cell rounding induced by MCFVv is coupled to reduced metabolic rate and inhibition of cellular proliferation. Moreover, delivery of MCFVv into host cells either as a fusion to the N-terminal fragment of anthrax toxin lethal factor or when naturally delivered as a V. vulnificus MARTX toxin led to loss of mitochondrial membrane potential, release of cytochrome c, activation of Bax and Bak, and processing of caspases and poly-(ADP-ribose) polymerase (PARP-γ). These studies specifically link the MCFVv effector domain to induction of the intrinsic apoptosis pathway by V. vulnificus.


Asunto(s)
Apoptosis , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Mitocondrias/metabolismo , Vibriosis/fisiopatología , Vibrio vulnificus/metabolismo , Toxinas Bacterianas/genética , Caspasas/metabolismo , Citocromos c/metabolismo , Interacciones Huésped-Patógeno , Humanos , Potencial de la Membrana Mitocondrial , Mitocondrias/enzimología , Estructura Terciaria de Proteína , Vibriosis/metabolismo , Vibriosis/microbiología , Vibrio vulnificus/química , Vibrio vulnificus/genética
7.
Sci Rep ; 14(1): 15691, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977697

RESUMEN

Breast invasive carcinoma (BRCA) is the most malignant and leading cause of death in women. Global efforts are ongoing for improvement in early detection, prevention, and treatment. In this milieu, a comprehensive analysis of RNA-sequencing data of 1097 BRCA samples and 114 normal adjacent tissues is done to identify dysregulated genes in major molecular classes of BRCA in various clinical stages. Significantly enriched pathways in distinct molecular classes of BRCA have been identified. Pathways such as interferon signaling, tryptophan degradation, granulocyte adhesion & diapedesis, and catecholamine biosynthesis were found to be significantly enriched in Estrogen/Progesterone Receptor positive/Human Epidermal Growth Factor Receptor 2 negative, pathways such as RAR activation, adipogenesis, the role of JAK1/2 in interferon signaling, TGF-ß and STAT3 signaling intricated in Estrogen/Progesterone Receptor negative/Human Epidermal Growth Factor Receptor 2 positive and pathways as IL-1/IL-8, TNFR1/TNFR2, TWEAK, and relaxin signaling were found in triple-negative breast cancer. The dysregulated genes were clustered based on their mutation frequency which revealed nine mutated clusters, some of which were well characterized in cancer while others were less characterized. Each cluster was analyzed in detail which led to the identification of NLGN3, MAML2, TTN, SYNE1, ANK2 as candidate genes in BRCA. They are central hubs in the protein-protein-interaction network, indicating their important regulatory roles. Experimentally, the Real-Time Quantitative Reverse Transcription PCR and western blot confirmed our computational predictions in cell lines. Further, immunohistochemistry corroborated the results in ~ 100 tissue samples. We could experimentally show that the NLGN3 & ANK2 have tumor-suppressor roles in BRCA as shown by cell viability assay, transwell migration, colony forming and wound healing assay. The cell viability and migration was found to be significantly reduced in MCF7 and MDA-MB-231 cell lines in which the selected genes were over-expressed as compared to control cell lines. The wound healing assay also demonstrated a significant decrease in wound closure at 12 h and 24 h time intervals in MCF7 & MDA-MB-231 cells. These findings established the tumor suppressor roles of NLGN3 & ANK2 in BRCA. This will have important ramifications for the therapeutics discovery against BRCA.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Redes Reguladoras de Genes , Transducción de Señal , Perfilación de la Expresión Génica , Línea Celular Tumoral , Invasividad Neoplásica
8.
Adv Mater ; 36(21): e2311467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241649

RESUMEN

Successful and selective inhibition of the cytosolic protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associating protein 1 (Keap1) can enhance the antioxidant response, with the potential for a therapeutic effect in a range of settings including in neurodegenerative disease (ND). Small molecule inhibitors have been developed, yet many have off-target effects, or are otherwise limited by poor cellular permeability. Peptide-based strategies have also been attempted to enhance specificity, yet face challenges due to susceptibility to degradation and lack of cellular penetration. Herein, these barriers are overcome utilizing a polymer-based proteomimetics. The protein-like polymer (PLP) consists of a synthetic, lipophilic polymer backbone displaying water soluble Keap1-binding peptides on each monomer unit forming a brush polymer architecture. The PLPs are capable of engaging Keap1 and displacing the cellular protective transcription factor Nrf2, which then translocates to the nucleus, activating the antioxidant response element (ARE). PLPs exhibit increased Keap1 binding affinity by several orders of magnitude compared to free peptides, maintain serum stability, are cell-penetrant, and selectively activate the ARE pathway in cells, including in primary cortical neuronal cultures. Keap1/Nrf2-inhibitory PLPs have the potential to impact the treatment of disease states associated with dysregulation of oxidative stress, such as NDs.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Polímeros , Unión Proteica , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/química , Factor 2 Relacionado con NF-E2/metabolismo , Polímeros/química , Humanos , Animales , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Elementos de Respuesta Antioxidante , Neuronas/metabolismo , Neuronas/efectos de los fármacos
9.
J Biol Chem ; 287(12): 9147-67, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22262847

RESUMEN

This investigation illustrates an important property of eukaryote-type serine/threonine phosphatase (SP-STP) of group A Streptococcus (GAS) in causing programmed cell death of human pharyngeal cells. The secretory nature of SP-STP, its elevated expression in the intracellular GAS, and the ability of wild-type GAS but not the GAS mutant devoid of SP-STP to cause apoptosis of the host cell both in vitro and in vivo suggest that GAS deploys SP-STP as an important virulence determinant to exploit host cell machinery for its own advantage during infection. The exogenously added SP-STP is able to enter the cytoplasm and subsequently traverses into the nucleus in a temporal fashion to cause apoptosis of the pharyngeal cells. The programmed cell death induced by SP-STP, which requires active transcription and de novo protein synthesis, is also caspase-dependent. Furthermore, the entry of SP-STP into the cytoplasm is dependent on its secondary structure as the catalytically inactive SP-STP with an altered structure is unable to internalize and cause apoptosis. The ectopically expressed wild-type SP-STP was found to be in the nucleus and conferred apoptosis of Detroit 562 pharyngeal cells. However, the catalytically inactive SP-STP was unable to cause apoptosis even when intracellularly expressed. The ability of SP-STP to activate pro-apoptotic signaling cascades both in the cytoplasm and in the nucleus resulted in mitochondrial dysfunctioning and perturbation in the phosphorylation status of histones in the nucleus. SP-STP thus not only functions as a virulence regulator but also as an important factor responsible for host-related pathogenesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Proteínas Bacterianas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/fisiopatología , Streptococcus pyogenes/enzimología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Bacterianas/genética , Línea Celular , Humanos , Ratones , Enfermedades Faríngeas/microbiología , Enfermedades Faríngeas/fisiopatología , Fosfoproteínas Fosfatasas/genética , Streptococcus pyogenes/genética , Streptococcus pyogenes/patogenicidad , Virulencia
10.
Cureus ; 15(10): e46828, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37954766

RESUMEN

Dental implantology has witnessed remarkable advancements in recent years, and zirconia has emerged as a prominent biomaterial for dental implant applications. This review explores the multifaceted aspects of zirconia, focusing on its properties, processing methods, biocompatibility, mechanical performance, and clinical applications. Over the past few decades, the most popular choice of material for dental implantology has been titanium which has been found to have the highest success rate of implant treatment. However, recently, it has been observed that zirconia might replace titanium and eventually emerge as one of the gold-standard materials of dental implants. Analysis of biomechanical sciences and biomaterial sciences provides an opportunity for the refinement of design and material notions for surgical implants. However, the most important aspect and prime concern is how tissue at the implant site responds to biomechanical disturbances caused by foreign materials. The literature revealed that zirconia has certain characteristics that make it an excellent material for implants, including biocompatibility and osseointegration which depicts positive soft tissue response with low plaque affinity as well as aesthetics owing to light transmission and color. Additionally, this review discusses the current challenges and prospects of zirconia in dental implantology as well as aims to provide dental professionals and researchers with a comprehensive understanding of zirconia's potential as a biomaterial in dental implantology. The present overview of available literature intends to highlight and explore the biological characteristics of zirconia for applications in dental implantology. However, research is urgently required to fill in gaps over time for clinical assessments of all zirconia implants, consequently, the implementation of hybrid systems (a titanium screw with a zirconia collar) has recently been suggested.

11.
Cureus ; 15(10): e46360, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37920631

RESUMEN

Background Children who are afraid of the dentist have terrible behavioral effects, and one of those effects is that they have a preconceived concept that getting treatment would be unpleasant. Such fear and anxiety can lead to avoidance of dental care. These patients must be recognized and their concerns addressed as soon as possible. It is, therefore, important to highlight the connection between the constructs that target the development of dental fear and anxiety, including its outcome in children concerning the prevalence of dental diseases. Aims and objectives To assess the prevalence of dental anxiety and its correlation to dental caries and gingivitis in students in Wardha aged six to 12 years old. Methods Two hundred schoolchildren between the ages of six and 12 were chosen at random, with 100 boys and 100 girls. Children had an oral examination utilizing the decayed, missing, and filled teeth (DMFT) Index as well as the Loe and Silness gingival index (GI), as well as a modified version of the dental fear survey questionnaire. Results In the study population, the prevalence of low to moderate "general dental fear" was 47%, whereas the frequency of high dental fear was 14%. The mean DMFT (1.80 ± 1.76) and GI (1.04 ± 0.52) of boys did not differ substantially from the DMFT (1.94 ± 81.02) and GI (0.97 ± 0.53) of girls (P > 0.05). Conclusion In terms of DMFT and gingival scores, there was not any obvious distinction between male and female children. Additionally, there was no connection found between "general dental fear" and either the DMFT or GI scores. Dental fear scores decreased with increasing age.

12.
J Obstet Gynaecol India ; 73(1): 62-68, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36879936

RESUMEN

Background: There are conflicting reports on status of ovarian function after hysterectomy and opportunistic salpingectomy in premenopausal women. The present study was undertaken to understand the effect of salpingectomy done at the time of hysterectomy on ovarian reserve and function as measured by serum AMH and FSH levels before and after the surgery. Methods: This was a prospective study conducted on 60 women who underwent hysterectomy at our tertiary care centre, Shri Guru Ram Rai Institute of medical and health sciences, Dehradun, from January 2020 to September 2021. Serum AMH and FSH levels were monitored preoperatively and 3 months postoperatively in patients undergoing hysterectomy with bilateral salpingectomy and hysterectomy without salpingectomy. Results: The mean age of the patients was 41.83 yrs in group 1 and 43.73 yrs in group 2 [p value = 0.078]. Most common indication of hysterectomy was AUB-L in both the groups (86% and 80%, respectively). Mean operative time was 115.50 min in group 1 and 114.40 min in group 2 [p value = 0.823]. Mean intra-operative blood loss was 214 ml in group 1 and 199.33 ml in group 2 [p value = 0.087]. Serum AMH and FSH were insignificantly decreased in both the groups post-operatively after 3 months, and the difference between both groups was also not statistically significant. Conclusion: Salpingectomy done at the time of hysterectomy for benign indications with preservation of ovaries did not have any short-term adverse effects on ovarian reserve and function.

13.
Mini Rev Med Chem ; 23(1): 33-52, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35657044

RESUMEN

Cancer is the leading cause of death and the most significant determinant of life expectancy in almost every country in this twenty-first century. According to the World Health Organization (WHO), cancer is responsible for the leading cause of death globally. Benzophenone derivatives are found in a variety of naturally occurring compounds which are known to be pharmacologically efficacious against a variety of diseases, including cancer. Microtubules are thought to be a good target for cancer chemotherapies. Microtubule polymerization and depolymerization are induced by a variety of natural, synthetic, and semisynthetic chemicals having a benzophenone nucleus, affecting tubulin dynamics. Several medications that affect microtubule dynamics are in various stages of clinical trials, including Combretastatins (phase II), Vincristine (clinically approved), Paclitaxel (in clinical usage), and epothilone (phase III), and only a few have been patented. Benzophenone derivatives target the colchicine binding site of microtubules, damage them and cause cell cycle arrest in the G2-M phase. Belonging to this class of molecules, phenstatin, a potent inhibitor of tubulin polymerization, has shown strongly inhibit cancer cell growth and arrest the G2/M phase of the cell cycle by targeting the colchicine binding site of microtubules. In the present manuscript, we described the benzophenone as tubulin polymerization inhibitors, their Structure-Activity Relationships (SARs) and molecular docking studies that reveal its binding affinity with the colchicine binding site.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Tubulina (Proteína)/química , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Colchicina/química , Colchicina/metabolismo , Colchicina/farmacología , Neoplasias/tratamiento farmacológico , Benzofenonas/farmacología
14.
Curr Med Chem ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37151060

RESUMEN

In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.

15.
Mini Rev Med Chem ; 23(21): 2008-2040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36861804

RESUMEN

Diabetes Mellitus (DM) is a long-term metabolic condition that is characterized by excessive blood glucose. DM is the third most death-causing disease, leading to retinopathy, nephropathy, loss of vision, stroke, and cardiac arrest. Around 90% of the total cases of diabetic patients have Type II Diabetes Mellitus (T2DM). Among various approaches for the treatment of T2DM. G proteincoupled receptors (GPCRs) 119 have been identified as a new pharmacological target. GPR119 is distributed preferentially in the pancreas ß-cells and gastrointestinal tract (enteroendocrine cells) in humans. GPR119 receptor activation elevates the release of incretin hormones such as Glucagon-Like Peptide (GLP1) and Glucose Dependent Insulinotropic Polypeptide (GIP) from intestinal K and L cells. GPR119 receptor agonists stimulate intracellular cAMP production via Gαs coupling to adenylate cyclase. GPR119 has been linked to the control of insulin release by pancreatic ß-cells, as well as the generation of GLP-1 by enteroendocrine cells in the gut, as per in vitro assays. The dual role of the GPR119 receptor agonist in the treatment of T2DM leads to the development of a novel prospective anti-diabetic drug and is thought to have decreased the probability of inducing hypoglycemia. GPR119 receptor agonists exert their effects in one of two ways: either by promoting glucose absorption by ß-cells, or by inhibiting α-cells' ability to produce glucose. In this review, we summarized potential targets for the treatment of T2DM with special reference to GPR119 along with its pharmacological effects, several endogenous as well as exogenous agonists, and its pyrimidine nucleus containing synthetic ligands.

16.
J Cell Biol ; 222(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37265445

RESUMEN

It is known that microtubule-binding proteins including the Ska1 complex and the DNA replication licensing factor, Cdt1, enable the kinetochore-localized Ndc80 complex to form robust kinetochore-microtubule attachments. However, it is not clear how the Ndc80 complex is stably coupled to dynamic spindle microtubule plus-ends. Here, we have developed a conditional auxin-inducible degron approach to reveal a function for Cdt1 in chromosome segregation and kinetochore-microtubule interactions that is separable from its role in DNA replication licensing. Further, we demonstrate that a direct interaction between Cdt1 and Ska1 is required for recruiting Cdt1 to kinetochores and spindle microtubules. Cdt1 phosphorylation by Cdk1 kinase is critical for Ska1 binding, kinetochore-microtubule attachments, and mitotic progression. Furthermore, we show that Cdt1 synergizes with Ndc80 and Ska1 for microtubule binding, including forming a diffusive, tripartite Ndc80-Cdt1-Ska1 complex that can processively track dynamic microtubule plus-ends in vitro. Taken together, our data identify the Ndc80-Cdt1-Ska1 complex as a central molecular unit that can promote processive bidirectional tip-tracking of microtubules by kinetochores.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , Cinetocoros , Proteínas Asociadas a Microtúbulos , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo
17.
Comput Struct Biotechnol J ; 21: 2845-2857, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37216018

RESUMEN

Big data analysis holds a considerable influence on several aspects of biomedical health science. It permits healthcare providers to gain insights from large and complex datasets, leading to improvements in the understanding, diagnosis, medication, and restraint of pathological conditions including cancer. The incidences of pancreatic cancer (PanCa) are sharply rising, and it will become the second leading cause of cancer related deaths by 2030. Various traditional biomarkers are currently in use but are not optimal in sensitivity and specificity. Herein, we determine the role of a new transmembrane glycoprotein, MUC13, as a potential biomarker of pancreatic ductal adenocarcinoma (PDAC) by using integrative big data mining and transcriptomic approaches. This study is helpful to identify and appropriately segment the data related to MUC13, which are scattered in various data sets. The assembling of the meaningful data, representation strategy was used to investigate the MUC13 associated information for the better understanding regarding its structural, expression profiling, genomic variants, phosphorylation motifs, and functional enrichment pathways. For further in-depth investigation, we have adopted several popular transcriptomic methods like DEGseq2, coding and non-coding transcript, single cell seq analysis, and functional enrichment analysis. All these analyzes suggest the presence of three nonsense MUC13 genomic transcripts, two protein transcripts, short MUC13 (s-MUC13, non-tumorigenic or ntMUC13), and long MUC13 (L-MUC13, tumorigenic or tMUC13), several important phosphorylation sites in tMUC13. Altogether, this data confirms that importance of tMUC13 as a potential biomarker, therapeutic target of PanCa, and its significance in pancreatic pathobiology.

18.
J Biol Chem ; 286(48): 41368-41380, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21917918

RESUMEN

Reversible phosphorylation is the key mechanism regulating several cellular events in prokaryotes and eukaryotes. In prokaryotes, signal transduction is perceived to occur primarily via the two-component signaling system involving histidine kinases and cognate response regulators. Although an alternative regulatory pathway controlled by the eukaryote-type serine/threonine kinase (Streptococcus pyogenes serine/threonine kinase; SP-STK) has been shown to modulate bacterial growth, division, adherence, invasion, and virulence in group A Streptococcus (GAS; S. pyogenes), the precise role of the co-transcribing serine/threonine phosphatase (SP-STP) has remained enigmatic. In this context, this is the first report describing the construction and characterization of non-polar SP-STP mutants in two different strains of Type M1 GAS. The STP knock-out mutants displayed increased bacterial chain lengths in conjunction with thickened cell walls, significantly reduced capsule and hemolysin production, and restoration of the phenotypes postcomplementation. The present study also reveals important contribution of cognately regulated-reversible phosphorylation by SP-STK/SP-STP on two major response regulators of two-component systems, WalRK and CovRS. We also demonstrate a distinct role of SP-STP in terms of expression of surface proteins and SpeB in a strain-specific manner. Further, the attenuation of virulence in the absence of STP and its restoration only in the complemented strains that were generated by the use of a low copy plasmid and not by a high copy one emphasize not only the essential role of STP in virulence but also highlight the tightly regulated SP-STP/SP-STK-mediated cognate functions. SP-STP thus is an important regulator of GAS virulence and plays a critical role in GAS pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/patogenicidad , Factores de Virulencia/metabolismo , Proteínas Bacterianas/genética , Línea Celular , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Mutación , Fosfoproteínas Fosfatasas/genética , Fosforilación/fisiología , Factores de Virulencia/genética
19.
Infect Immun ; 80(4): 1361-72, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22311926

RESUMEN

Streptococcus pneumoniae exploits a battery of virulence factors to colonize the host. Although the eukaryote-like Ser/Thr kinase of S. pneumoniae (StkP) has been implicated in physiology and virulence, the role of its cotranscribing phosphatase (PhpP) has remained elusive. The construction of nonpolar markerless phpP knockout mutants (ΔphpP) in two pathogenic strains, D39 (type 2) and 6A-EF3114 (type 6A), indicated that PhpP is not indispensable for pneumococcal survival. Further, PhpP also participates in the regulation of cell wall biosynthesis/division, adherence, and biofilm formation in a strain-specific manner. Additionally, we provide hitherto-unknown in vitro and in vivo evidence of a physiologically relevant biochemical link between the StkP/PhpP-mediated cognate regulation and the two-component regulatory system TCS06 (RR06/HK06) that regulates the expression of the gene encoding an important pneumococcal surface adhesin, CbpA, which was found to be significantly upregulated in ΔphpP mutants. In particular, StkP (threonine)-phosphorylated RR06 bound to the cbpA promoter with high efficiency even in the absence of the HK06-responsive and catalytically active aspartate 51 residue. Together, our findings unravel the significant contributions of PhpP in pneumococcal physiology and adherence.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Streptococcus pneumoniae/enzimología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Línea Celular , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Fosfoproteínas Fosfatasas/genética , Transducción de Señal , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidad , Streptococcus pneumoniae/fisiología
20.
Drug Discov Today ; 27(2): 585-611, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34715356

RESUMEN

In this review, we emphasize on evolving therapeutic strategies and advances in the treatment of breast cancer (BC). This includes small-molecule inhibitors under preclinical and clinical investigation, phytoconstituents with antiproliferative potential, targeted therapies as antibodies and antibody-drug conjugates (ADCs), vaccines as immunotherapeutic agents and peptides as a novel approach inhibiting the interaction of oncogenic proteins. We provide an update of molecules under different phases of clinical investigation which aid in the identification of loopholes or shortcomings that can be overcomed with future breast cancer research.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Inmunoconjugados , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Inmunoconjugados/farmacología , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA