Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Stem Cell ; 24(1): 107-122.e7, 2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30554964

RESUMEN

Huntington's disease (HD) is characterized by hypomyelination and neuronal loss. To assess the basis for myelin loss in HD, we generated bipotential glial progenitor cells (GPCs) from human embryonic stem cells (hESCs) derived from mutant Huntingtin (mHTT) embryos or normal controls and performed RNA sequencing (RNA-seq) to assess mHTT-dependent changes in gene expression. In human GPCs (hGPCs) derived from 3 mHTT hESC lines, transcription factors associated with glial differentiation and myelin synthesis were sharply downregulated relative to normal hESC GPCs; NKX2.2, OLIG2, SOX10, MYRF, and their downstream targets were all suppressed. Accordingly, when mHTT hGPCs were transplanted into hypomyelinated shiverer mice, the resultant glial chimeras were hypomyelinated; this defect could be rescued by forced expression of SOX10 and MYRF by mHTT hGPCs. The mHTT hGPCs also manifested impaired astrocytic differentiation and developed abnormal fiber architecture. White matter involution in HD is thus a product of the cell-autonomous, mHTT-dependent suppression of glial differentiation.


Asunto(s)
Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Células Madre Embrionarias Humanas/patología , Proteína Huntingtina/genética , Enfermedad de Huntington/patología , Neuroglía/patología , Células Madre/patología , Animales , Astrocitos/metabolismo , Astrocitos/patología , Diferenciación Celular , Quimera , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Células Madre Embrionarias Humanas/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Mutación , Neurogénesis , Neuroglía/metabolismo , Proteínas Nucleares , Células Madre/metabolismo , Factores de Transcripción
2.
J Comp Neurol ; 504(2): 127-48, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17626267

RESUMEN

Zebra finch males learn their song by imitation, a process influenced by social variables. The neural pathways for acquisition and production of learned song are known, but the cellular and molecular underpinnings are not. Here we describe a novel gene named "FnTm2" ("Phantom 2") that is predicted to encode a small protein (220 aa) with a single fibronectin type III domain and a single transmembrane domain. This gene shows great variability in its expression in song system neurons of the anterior forebrain pathway (AFP), a circuit that influences song discrimination and is necessary for normal song acquisition. AFP nuclei that express FnTm2 include the nucleus HVC (its Area X-projecting neurons), Area X, and LMAN (core and shell). FnTm2 expression does not correlate with singing behavior like the immediate early gene ZENK. It is expressed variably during sleeping hours and is not dependent on an intact song circuit. FnTm2's expression is sensitive to hearing, because in deafened birds its expression is substantially reduced in the core of LMAN. Furthermore, a comparison of FnTm2 expression between mice and zebra finches revealed a conserved pattern of expression in the "limbic system." We suggest that FnTm2 may be sensitive to affective and/or attentional states and thus may provide insights on how social variables influence the production and discrimination of learned vocalizations.


Asunto(s)
Proteínas Aviares/metabolismo , Fibronectinas/metabolismo , Pinzones/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vocalización Animal/fisiología , Secuencia de Aminoácidos , Amígdala del Cerebelo/metabolismo , Animales , Aprendizaje por Asociación/fisiología , Proteínas Aviares/genética , Aprendizaje Discriminativo/fisiología , Fibronectinas/genética , Centro Vocal Superior/metabolismo , Hipotálamo/metabolismo , Masculino , Datos de Secuencia Molecular , Neostriado/metabolismo , Proteínas del Tejido Nervioso/genética , Vías Nerviosas/metabolismo , Especificidad de Órganos , Estructura Terciaria de Proteína/fisiología
3.
J Neurosci Methods ; 138(1-2): 199-206, 2004 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-15325128

RESUMEN

Studies over roughly the last decade have emphasized the importance of gene expression in the development of structure and function of the songbird forebrain. However, few tools have been available to efficiently identify the critical factors. To that end, we have produced a normalized cDNA library from juvenile zebra finch telencephalon, and have spotted inserts from 2400 randomly selected cDNA clones on microarrays (1664 unique sequences). We have also added several previously cloned cDNAs of interest, including three representing genes encoded on sex chromosomes. Hybridizations comparing Cy3- and Cy5-labeled cDNA from the telencephalon of day 25 male and female zebra finches confirmed sexually dimorphic expression of the Z- and W-linked genes, demonstrating the utility of these microarrays for detecting differential expression and providing information about the relative expression of these genes in the brains of juveniles of this age.


Asunto(s)
Expresión Génica/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Caracteres Sexuales , Telencéfalo/metabolismo , Animales , Femenino , Biblioteca de Genes , Masculino , Pájaros Cantores , Vocalización Animal/fisiología
4.
Genomics ; 87(1): 181-90, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16321505

RESUMEN

The zebra finch (Taeniopygia guttata) is an important model organism for studying behavior, neuroscience, avian biology, and evolution. To support the study of its genome, we constructed a BAC library (TG__Ba) using DNA from livers of females. The BAC library consists of 147,456 clones with 98% containing inserts of an average size of 134 kb and represents 15.5 haploid genome equivalents. By sequencing a whole BAC, a full-length androgen receptor open reading frame was identified, the first in an avian species. Comparison of BAC end sequences and the whole BAC sequence with the chicken genome draft sequence showed a high degree of conserved synteny between the zebra finch and the chicken genome.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Pinzones/genética , Biblioteca Genómica , Sistemas de Lectura Abierta/genética , Receptores Androgénicos/genética , Animales , Secuencia de Bases , Conducta Animal/fisiología , Pollos/genética , Evolución Molecular , Femenino , Datos de Secuencia Molecular
5.
Proc Natl Acad Sci U S A ; 102(21): 7730-5, 2005 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-15894627

RESUMEN

Sexual differentiation of the zebra finch (Taeniopygia guttata) neural song circuit is thought to be initiated by sex differences in sex chromosome gene expression in brain cells. One theory is that Z-linked genes, present in the male's ZZ genome at double the dose of females' (ZW), are expressed at higher levels and trigger masculine patterns of development. We report here that trkB (tyrosine kinase receptor B) is Z-linked in zebra finches. trkB is the receptor for neurotrophic factors BDNF and neurotrophin 4, and mediates their influence on neuronal survival, migration, and specification. trkB mRNA is expressed at a higher level in the male telencephalon or whole brain than in corresponding regions of the female in adulthood, and at posthatch day (P) 6, when the song circuit is undergoing sexual differentiation. Moreover, this expression is higher in the song nucleus high vocal center (HVC) than in the surrounding telencephalon at P6, and in males relative to females. In addition, trkB protein is expressed more highly in male than female whole brain at P6. These results establish trkB as a candidate factor that contributes to masculine differentiation of HVC because of its Z-linkage, which leads to sex differences in expression. BDNF is known to be stimulated by estrogen and to be expressed at higher levels in males than females at later ages in HVC. Thus, the trkB-BDNF system may be a focal point for convergent masculinizing influences of Z-linked factors and hormones.


Asunto(s)
Encéfalo/metabolismo , Pinzones/metabolismo , Expresión Génica , Receptor trkB/metabolismo , Caracteres Sexuales , Cromosomas Sexuales/metabolismo , Vocalización Animal , Animales , Secuencia de Bases , Northern Blotting , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Clonación Molecular , Cartilla de ADN , ADN Complementario/genética , Femenino , Hibridación in Situ , Hibridación Fluorescente in Situ , Masculino , Datos de Secuencia Molecular , Receptor trkB/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Factores Sexuales
6.
Biol Reprod ; 66(4): 1127-33, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11906934

RESUMEN

The zebra finch (Taeniopygia guttata) brain is highly sexually dimorphic. The organization and production of sex-specific song is considerably influenced by estrogens and androgens. Because the brain itself expresses several steroidogenic enzymes, the local production of sex steroids may contribute to sex differences in neural development. Sex steroid production in gonads is directed by a master regulatory factor, steroidogenic factor 1 (SF1). We have identified a cDNA encoding the homologue of SF1 in the zebra finch and utilized reverse transcription-polymerase chain reaction and in situ hybridization to examine early and late developmental expression of SF1 in brain and in early gonadal development. We found that SF1 is expressed early in embryonic development in the Rathke pouch, beginning at stage 15 and extending to at least stage 27 in both males and females. The earliest expression of SF1 in gonads was found at stage 17 for both males and females and extended to at least stage 27. In brain, we assessed SF1 mRNA expression in posthatch and adult telencephalon, and we compared SF1 and aromatase mRNA expression in adult hypothalamus. In the telencephalon and hippocampus, aromatase was expressed independently of SF1, whereas in the hypothalamus, aromatase and SF1 expression were more closely associated. Expression of SF1 and of aromatase overlapped in restricted regions of the hypothalamus, suggesting that SF1 may regulate aromatase expression in these regions. These findings suggest that steroidogenesis in the zebra finch brain may be regulated by both SF1-dependent and SF1-independent mechanisms. No sex differences were detected in SF1 expression in brain.


Asunto(s)
Aromatasa/genética , Clonación Molecular , Proteínas de Unión al ADN/genética , Expresión Génica , Hipotálamo/química , Pájaros Cantores/genética , Factores de Transcripción/genética , Glándulas Suprarrenales/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , ADN Complementario/química , ADN Complementario/aislamiento & purificación , Proteínas de Unión al ADN/química , Femenino , Factores de Transcripción Fushi Tarazu , Proteínas de Homeodominio , Hibridación in Situ , Masculino , Datos de Secuencia Molecular , Ovario/química , Receptores Citoplasmáticos y Nucleares , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor Esteroidogénico 1 , Telencéfalo/química , Testículo/química , Factores de Transcripción/química
7.
Mol Biol Evol ; 21(2): 384-96, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14660691

RESUMEN

Genes on the sex chromosomes are unique because of their sex-specific inheritance. One question is whether homologous gene pairs on the sex chromosomes, which have diverged in their sequence, have acquired different functions. We have analyzed the first homologous pair of genes (CHD1Z and CHD1W) discovered on the avian Z and W sex chromosomes of the zebra finch (Taeniopygia guttata) to examine whether functional differences may have evolved. Sequence analysis revealed that the two genes maintained a high degree of similarity especially within the C, H, and D domains, but outside of these regions larger differences were observed. Expression studies showed that CHD1W was unique to females and has the potential to produce a protein that CHD1Z does not. CHD1Z mRNA was expressed at a higher level in the male brain than in the female brain at various post-hatch ages. Reporter constructs containing the 5' flanking regions of each gene showed they had the ability to drive reporter expression in primary cell cultures. The 5' flanking region sequence of CHD1Z and CHD1W exhibited little homology, and differences in putative promoter elements were apparent. These differences between CHD1Z and CHD1W suggest that the two proteins may have diverged in their function.


Asunto(s)
Proteínas Aviares/genética , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo , Pájaros Cantores/genética , Región de Flanqueo 5'/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Masculino , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína/genética , Homología de Secuencia , Pájaros Cantores/fisiología
8.
Proc Natl Acad Sci U S A ; 100(8): 4873-8, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12672961

RESUMEN

In mammals and birds, sex differences in brain function and disease are thought to derive exclusively from sex differences in gonadal hormone secretions. For example, testosterone in male mammals acts during fetal and neonatal life to cause masculine neural development. However, male and female brain cells also differ in genetic sex; thus, sex chromosome genes acting within cells could contribute to sex differences in cell function. We analyzed the sexual phenotype of the brain of a rare gynandromorphic finch in which the right half of the brain was genetically male and the left half genetically female. The neural song circuit on the right had a more masculine phenotype than that on the left. Because both halves of the brain were exposed to a common gonadal hormone environment, the lateral differences indicate that the genetic sex of brain cells contributes to the process of sexual differentiation. Because both sides of the song circuit were more masculine than that of females, diffusible factors such as hormones of gonadal or neural origin also likely played a role in sexual differentiation.


Asunto(s)
Encéfalo/fisiología , Pájaros Cantores/fisiología , Animales , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , ADN/genética , Femenino , Hormonas Esteroides Gonadales/fisiología , Hibridación in Situ , Masculino , Modelos Neurológicos , Datos de Secuencia Molecular , Ovario/anatomía & histología , Fenotipo , Caracteres Sexuales , Cromosomas Sexuales/genética , Diferenciación Sexual , Pájaros Cantores/anatomía & histología , Pájaros Cantores/genética , Pájaros Cantores/crecimiento & desarrollo , Testículo/anatomía & histología , Vocalización Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA