Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(3): 643-55, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27104980

RESUMEN

Oncogenic activation of RAS genes via point mutations occurs in 20%-30% of human cancers. The development of effective RAS inhibitors has been challenging, necessitating new approaches to inhibit this oncogenic protein. Functional studies have shown that the switch region of RAS interacts with a large number of effector proteins containing a common RAS-binding domain (RBD). Because RBD-mediated interactions are essential for RAS signaling, blocking RBD association with small molecules constitutes an attractive therapeutic approach. Here, we present evidence that rigosertib, a styryl-benzyl sulfone, acts as a RAS-mimetic and interacts with the RBDs of RAF kinases, resulting in their inability to bind to RAS, disruption of RAF activation, and inhibition of the RAS-RAF-MEK pathway. We also find that ribosertib binds to the RBDs of Ral-GDS and PI3Ks. These results suggest that targeting of RBDs across multiple signaling pathways by rigosertib may represent an effective strategy for inactivation of RAS signaling.


Asunto(s)
Glicina/análogos & derivados , Proteínas de Unión al ARN/química , Transducción de Señal/efectos de los fármacos , Sulfonas/farmacología , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Transformación Celular Neoplásica/efectos de los fármacos , Cristalografía por Rayos X , Dimerización , Glicina/administración & dosificación , Glicina/química , Glicina/farmacología , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Desnudos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Neoplasias Pancreáticas/tratamiento farmacológico , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Sulfonas/administración & dosificación , Sulfonas/química , Proteínas ras/metabolismo , Quinasa Tipo Polo 1
2.
Cell ; 160(3): 367-80, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25619691

RESUMEN

The discovery that enhancers are regulated transcription units, encoding eRNAs, has raised new questions about the mechanisms of their activation. Here, we report an unexpected molecular mechanism that underlies ligand-dependent enhancer activation, based on DNA nicking to relieve torsional stress from eRNA synthesis. Using dihydrotestosterone (DHT)-induced binding of androgen receptor (AR) to prostate cancer cell enhancers as a model, we show rapid recruitment, within minutes, of DNA topoisomerase I (TOP1) to a large cohort of AR-regulated enhancers. Furthermore, we show that the DNA nicking activity of TOP1 is a prerequisite for robust eRNA synthesis and enhancer activation and is kinetically accompanied by the recruitment of ATR and the MRN complex, followed by additional components of DNA damage repair machinery to the AR-regulated enhancers. Together, our studies reveal a linkage between eRNA synthesis and ligand-dependent TOP1-mediated nicking-a strategy exerting quantitative effects on eRNA expression in regulating AR-bound enhancer-dependent transcriptional programs.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Receptores Androgénicos/metabolismo , Línea Celular Tumoral , Roturas del ADN de Cadena Simple , Reparación del ADN , ADN-Topoisomerasas de Tipo I/genética , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de Homeodominio/metabolismo , Humanos , Proteína Homóloga de MRE11 , Factores de Transcripción/metabolismo , Transcripción Genética
3.
Nat Rev Mol Cell Biol ; 18(8): 471-476, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28537575

RESUMEN

The idea that signal-dependent transcription might involve the generation of transient DNA nicks or even breaks in the regulatory regions of genes, accompanied by activation of DNA damage repair pathways, would seem to be counterintuitive, as DNA damage is usually considered harmful to cellular integrity. However, recent studies have generated a substantial body of evidence that now argues that programmed DNA single- or double-strand breaks can, at least in specific cases, have a role in transcription regulation. Here, we discuss the emerging functions of DNA breaks in the relief of DNA torsional stress and in promoter and enhancer activation.


Asunto(s)
Daño del ADN/genética , ADN/química , Animales , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Regulación de la Expresión Génica , Humanos
4.
Mol Cell ; 79(1): 180-190.e4, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32619468

RESUMEN

Rigosertib is a styryl benzyl sulfone that inhibits growth of tumor cells and acts as a RAS mimetic by binding to Ras binding domains of RAS effectors. A recent study attributed rigosertib's mechanism of action to microtubule binding. In that study, rigosertib was obtained from a commercial vendor. We compared the purity of clinical-grade and commercially sourced rigosertib and found that commercially sourced rigosertib contains approximately 5% ON01500, a potent inhibitor of tubulin polymerization. Clinical-grade rigosertib, which is free of this impurity, does not exhibit tubulin-binding activity. Cell lines expressing mutant ß-tubulin have also been reported to be resistant to rigosertib. However, our study showed that these cells failed to proliferate in the presence of rigosertib at concentrations that are lethal to wild-type cells. Rigosertib induced a senescence-like phenotype in the small percentage of surviving cells, which could be incorrectly scored as resistant using short-term cultures.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular , Glicina/análogos & derivados , Neoplasias Pulmonares/patología , Sulfonas/farmacología , Tubulina (Proteína)/metabolismo , Contaminación de Medicamentos , Resistencia a Antineoplásicos , Glicina/farmacología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Mutación , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Células Tumorales Cultivadas
5.
Nature ; 595(7867): 444-449, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34194047

RESUMEN

The size of the transcriptional program of long non-coding RNAs in the mammalian genome has engendered discussions about their biological roles1, particularly the promoter antisense (PAS) transcripts2,3. Here we report the development of an assay-referred to as chromatin isolation by RNA-Cas13a complex-to quantitatively detect the distribution of RNA in the genome. The assay revealed that PAS RNAs serve as a key gatekeeper of a broad transcriptional pause release program, based on decommissioning the 7SK small nuclear RNA-dependent inhibitory P-TEFb complex. Induction of PAS RNAs by liganded ERα led to a significant loss of H3K9me3 and the release of basally recruited HP1α and KAP1 on activated target gene promoters. This release was due to PAS RNA-dependent recruitment of H3K9me3 demethylases, which required interactions with a compact stem-loop structure in the PAS RNAs, an apparent feature of similarly regulated PAS RNAs. Activation of the ERα-bound MegaTrans enhancer, which is essential for robust pause release, required the recruitment of phosphorylated KAP1, with its transfer to the cognate promoters permitting 17ß-oestradiol-induced pause release and activation of the target gene. This study reveals a mechanism, based on RNA structure, that mediates the function of PAS RNAs in gene regulation.


Asunto(s)
Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , ARN sin Sentido/química , ARN sin Sentido/genética , Activación Transcripcional/genética , Línea Celular , Homólogo de la Proteína Chromobox 5/metabolismo , Proteína Sustrato Asociada a CrK , Receptor alfa de Estrógeno/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ligandos , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Estabilidad del ARN , Proteína 28 que Contiene Motivos Tripartito/metabolismo
6.
Mol Cell ; 71(4): 526-539.e8, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30118678

RESUMEN

Nuclear receptors induce both transcriptional activation and repression programs responsible for development, homeostasis, and disease. Here, we report a previously overlooked enhancer decommissioning strategy underlying a large estrogen receptor alpha (ERα)-dependent transcriptional repression program. The unexpected signature for this E2-induced program resides in indirect recruitment of ERα to a large cohort of pioneer factor basally active FOXA1-bound enhancers that lack cognate ERα DNA-binding elements. Surprisingly, these basally active estrogen-repressed (BAER) enhancers are decommissioned by ERα-dependent recruitment of the histone demethylase KDM2A, functioning independently of its demethylase activity. Rather, KDM2A tethers the E3 ubiquitin-protein ligase NEDD4 to ubiquitylate/dismiss Pol II to abrogate eRNA transcription, with consequent target gene downregulation. Thus, our data reveal that Pol II ubiquitylation/dismissal may serve as a potentially broad strategy utilized by indirectly bound nuclear receptors to abrogate large programs of pioneer factor-mediated, eRNA-producing enhancers.


Asunto(s)
Elementos de Facilitación Genéticos , Receptor alfa de Estrógeno/genética , Proteínas F-Box/genética , Factor Nuclear 3-alfa del Hepatocito/genética , Histona Demetilasas con Dominio de Jumonji/genética , Ubiquitina-Proteína Ligasas Nedd4/genética , ARN Polimerasa II/genética , Secuencia de Bases , Sitios de Unión , Sistemas CRISPR-Cas , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Proteínas F-Box/metabolismo , Edición Génica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células MCF-7 , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Unión Proteica , ARN/genética , ARN/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal , Transcripción Genética/efectos de los fármacos , Ubiquitinación/efectos de los fármacos
7.
PLoS Pathog ; 19(7): e1011546, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37523415

RESUMEN

The RNA N7-methyltransferase (MTase) activity of SARS-CoV-2's nsp14 protein is essential for viral replication and is a target for the development of new antivirals. Nsp14 uses S-adenosyl methionine (SAM) as the methyl donor to cap the 5' end of the SARS-CoV-2 mRNA and generates S-adenosyl homocysteine (SAH) as the reaction byproduct. Due to the central role of histone MTases in cancer, many SAM/SAH analogs with properties of cell permeability have recently been developed for the inhibition of these MTases. We have succeeded in identifying two such compounds (SGC0946 and SGC8158) that display significant antiviral activity and bind to the SARS-CoV-2 nsp14 N7-MTase core. Unexpectedly, crystal structures of SGC0946 and SGC8158 with the SARS-CoV-2 nsp14 N7-MTase core identify them as bi-substrate inhibitors of the viral MTase, co-occupying both the SAM and RNA binding sites; positing novel features that can be derivatized for increased potency and selectivity for SARS-CoV-2 nsp14. Taken together, the high-resolution structures and the accompanying biophysical and viral replication data provide a new avenue for developing analogs of SGC0946 and SGC8158 as antivirals.


Asunto(s)
COVID-19 , Metiltransferasas , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Antivirales/farmacología , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , S-Adenosilmetionina/metabolismo , ARN , ARN Viral/genética , ARN Viral/metabolismo , Exorribonucleasas/genética , N-Metiltransferasa de Histona-Lisina , Proteína-Arginina N-Metiltransferasas
8.
Mol Cell ; 58(5): 767-79, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25936804

RESUMEN

The PIDDosome-PIDD-RAIDD-caspase-2 complex-is a proapoptotic caspase-activation platform of elusive significance. DNA damage can initiate complex assembly via ATM phosphorylation of the PIDD death domain (DD), which enables RAIDD recruitment to PIDD. In contrast, the mechanisms limiting PIDDosome formation have remained unclear. We identify the mitotic checkpoint factor BubR1 as a direct PIDDosome inhibitor, acting in a noncanonical role independent of Mad2. Following its phosphorylation by ATM at DNA breaks, "primed" PIDD relocates to kinetochores via a direct interaction with BubR1. BubR1 binds the PIDD DD, competes with RAIDD recruitment, and negates PIDDosome-mediated apoptosis after ionizing radiation. The PIDDosome thus sequentially integrates DNA damage and mitotic checkpoint signals to decide cell fate in response to genotoxic stress. We further show that by sequestering PIDD at the kinetochore, BubR1 acts to delay PIDDosome formation until the next cycle, defining a new mechanism by which cells evade apoptosis during mitosis.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Caspasa 2/metabolismo , Cisteína Endopeptidasas/metabolismo , Daño del ADN , Células HCT116 , Células HeLa , Humanos , Cinetocoros/enzimología , Proteínas Mad2/metabolismo , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Transducción de Señal
9.
PLoS Biol ; 14(4): e1002442, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27082731

RESUMEN

The creation of restriction enzymes with programmable DNA-binding and -cleavage specificities has long been a goal of modern biology. The recently discovered Type IIL MmeI family of restriction-and-modification (RM) enzymes that possess a shared target recognition domain provides a framework for engineering such new specificities. However, a lack of structural information on Type IIL enzymes has limited the repertoire that can be rationally engineered. We report here a crystal structure of MmeI in complex with its DNA substrate and an S-adenosylmethionine analog (Sinefungin). The structure uncovers for the first time the interactions that underlie MmeI-DNA recognition and methylation (5'-TCCRAC-3'; R = purine) and provides a molecular basis for changing specificity at four of the six base pairs of the recognition sequence (5'-TCCRAC-3'). Surprisingly, the enzyme is resilient to specificity changes at the first position of the recognition sequence (5'-TCCRAC-3'). Collectively, the structure provides a basis for engineering further derivatives of MmeI and delineates which base pairs of the recognition sequence are more amenable to alterations than others.


Asunto(s)
ADN/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Secuencia de Bases , Metilación de ADN , Hidrólisis , Datos de Secuencia Molecular
10.
J Am Chem Soc ; 139(35): 12219-12227, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28780862

RESUMEN

Many intrinsically disordered proteins (IDPs) and protein regions (IDRs) engage in transient, yet specific, interactions with a variety of protein partners. Often, if not always, interactions with a protein partner lead to partial folding of the IDR. Characterizing the conformational space of such complexes is challenging: in solution-state NMR, signals of the IDR in the interacting region become broad, weak, and often invisible, while X-ray crystallography only provides information on fully ordered regions. There is thus a need for a simple method to characterize both fully and partially ordered regions in the bound state of IDPs. Here, we introduce an approach based on monitoring chemical exchange by NMR to investigate the state of an IDR that folds upon binding through the observation of the free state of the protein. Structural constraints for the bound state are obtained from chemical shifts, and site-specific dynamics of the bound state are characterized by relaxation rates. The conformation of the interacting part of the IDR was determined and subsequently docked onto the structure of the folded partner. We apply the method to investigate the interaction between the disordered C-terminal region of Artemis and the DNA binding domain of Ligase IV. We show that we can accurately reproduce the structure of the core of the complex determined by X-ray crystallography and identify a broader interface. The method is widely applicable to the biophysical investigation of complexes of disordered proteins and folded proteins.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Resonancia Magnética Nuclear Biomolecular/métodos , Cristalografía por Rayos X , ADN Ligasa (ATP)/química , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Pliegue de Proteína
11.
Proc Natl Acad Sci U S A ; 111(50): 17995-8000, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453078

RESUMEN

A variety of human cancers, including nonsmall cell lung (NSCLC), breast, and colon cancers, are driven by the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases. Having shown that bisphosphonates, a class of drugs used widely for the therapy of osteoporosis and metastatic bone disease, reduce cancer cell viability by targeting HER1, we explored their potential utility in the prevention and therapy of HER-driven cancers. We show that bisphosphonates inhibit colony formation by HER1(ΔE746-A750)-driven HCC827 NSCLCs and HER1(wt)-expressing MB231 triple negative breast cancers, but not by HER(low)-SW620 colon cancers. In parallel, oral gavage with bisphosphonates of mice xenografted with HCC827 or MB231 cells led to a significant reduction in tumor volume in both treatment and prevention protocols. This result was not seen with mice harboring HER(low) SW620 xenografts. We next explored whether bisphosphonates can serve as adjunctive therapies to tyrosine kinase inhibitors (TKIs), namely gefitinib and erlotinib, and whether the drugs can target TKI-resistant NSCLCs. In silico docking, together with molecular dynamics and anisotropic network modeling, showed that bisphosphonates bind to TKIs within the HER1 kinase domain. As predicted from this combinatorial binding, bisphosphonates enhanced the effects of TKIs in reducing cell viability and driving tumor regression in mice. Impressively, the drugs also overcame erlotinib resistance acquired through the gatekeeper mutation T790M, thus offering an option for TKI-resistant NSCLCs. We suggest that bisphosphonates can potentially be repurposed for the prevention and adjunctive therapy of HER1-driven cancers.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/prevención & control , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/prevención & control , Difosfonatos/farmacología , Receptores ErbB/antagonistas & inhibidores , Animales , Western Blotting , Difosfonatos/uso terapéutico , Reposicionamiento de Medicamentos/métodos , Femenino , Citometría de Flujo , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Ratones Endogámicos BALB C , Simulación de Dinámica Molecular , Unión Proteica , Transducción de Señal/efectos de los fármacos , Sales de Tetrazolio , Tiazoles , Ensayo de Tumor de Célula Madre
12.
Proc Natl Acad Sci U S A ; 111(50): 17989-94, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453081

RESUMEN

Bisphosphonates are the most commonly prescribed medicines for osteoporosis and skeletal metastases. The drugs have also been shown to reduce cancer progression, but only in certain patient subgroups, suggesting that there is a molecular entity that mediates bisphosphonate action on tumor cells. Using connectivity mapping, we identified human epidermal growth factor receptors (human EGFR or HER) as a potential new molecular entity for bisphosphonate action. Protein thermal shift and cell-free kinase assays, together with computational modeling, demonstrated that N-containing bisphosphonates directly bind to the kinase domain of HER1/2 to cause a global reduction in downstream signaling. By doing so, the drugs kill lung, breast, and colon cancer cells that are driven by activating mutations or overexpression of HER1. Knocking down HER isoforms thus abrogates cell killing by bisphosphonates, establishing complete HER dependence and ruling out a significant role for other receptor tyrosine kinases or the enzyme farnesyl pyrophosphate synthase. Consistent with this finding, colon cancer cells expressing low levels of HER do not respond to bisphosphonates. The results suggest that bisphosphonates can potentially be repurposed for the prevention and therapy of HER family-driven cancers.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Difosfonatos/farmacología , Receptores ErbB/antagonistas & inhibidores , Modelos Moleculares , Anisotropía , Western Blotting , Línea Celular Tumoral , Cristalografía , Difosfonatos/metabolismo , Receptores ErbB/química , Receptores ErbB/metabolismo , Fluorescencia , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Sales de Tetrazolio , Tiazoles
13.
J Biol Chem ; 290(10): 6639-52, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25572402

RESUMEN

The cell adhesion molecule CD44 regulates diverse cellular functions, including cell-cell and cell-matrix interaction, cell motility, migration, differentiation, and growth. In cells, CD44 co-localizes with the membrane-cytoskeleton adapter protein Ezrin that links the CD44 assembled receptor signaling complexes to the cytoskeletal actin network, which organizes the spatial and temporal localization of signaling events. Here we report that the cytoplasmic tail of CD44 (CD44ct) is largely disordered. Upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2), CD44ct clusters into aggregates. Further, contrary to the generally accepted model, CD44ct does not bind directly to the FERM domain of Ezrin or to the full-length Ezrin but only forms a complex with FERM or with the full-length Ezrin in the presence of PIP2. Using contrast variation small angle neutron scattering, we show that PIP2 mediates the assembly of a specific heterotetramer complex of CD44ct with Ezrin. This study reveals the role of PIP2 in clustering CD44 and in assembling multimeric CD44-Ezrin complexes. We hypothesize that polyvalent electrostatic interactions are responsible for the assembly of CD44 clusters and the multimeric PIP2-CD44-Ezrin complexes.


Asunto(s)
Adhesión Celular , Proteínas del Citoesqueleto/química , Receptores de Hialuranos/química , Complejos Multiproteicos/química , Fosfatidilinositol 4,5-Difosfato/química , Animales , Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Citosol/química , Citosol/metabolismo , Cobayas , Receptores de Hialuranos/biosíntesis , Receptores de Hialuranos/metabolismo , Complejos Multiproteicos/aislamiento & purificación , Fosfatidilinositol 4,5-Difosfato/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Transducción de Señal/genética
14.
Bioorg Med Chem ; 24(4): 521-44, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26762835

RESUMEN

Several families of protein kinases have been shown to play a critical role in the regulation of cell cycle progression, particularly progression through mitosis. These kinase families include the Aurora kinases, the Mps1 gene product and the Polo Like family of protein kinases (PLKs). The PLK family consists of five members and of these, the role of PLK1 in human cancer is well documented. PLK2 (SNK), which is highly homologous to PLK1, has been shown to play a critical role in centriole duplication and is also believed to play a regulatory role in the survival pathway by physically stabilizing the TSC1/2 complex in tumor cells under hypoxic conditions. As a part of our research program, we have developed a library of novel ATP mimetic chemotypes that are cytotoxic against a panel of cancer cell lines. We show that one of these chemotypes, the 6-arylsulfonyl pyridopyrimidinones, induces apoptosis of human tumor cell lines in nanomolar concentrations. The most potent of these compounds, 7ao, was found to be a highly specific inhibitor of PLK2 when profiled against a panel of 288 wild type, 55 mutant and 12 lipid kinases. Here, we describe the synthesis, structure activity relationship, in vitro kinase specificity and biological activity of the lead compound, 7ao.


Asunto(s)
Descubrimiento de Drogas , Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirimidinonas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Pirimidinonas/síntesis química , Pirimidinonas/química , Relación Estructura-Actividad
15.
Nature ; 465(7301): 1039-43, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20577207

RESUMEN

DNA polymerase eta (Poleta) is unique among eukaryotic polymerases in its proficient ability for error-free replication through ultraviolet-induced cyclobutane pyrimidine dimers, and inactivation of Poleta (also known as POLH) in humans causes the variant form of xeroderma pigmentosum (XPV). We present the crystal structures of Saccharomyces cerevisiae Poleta (also known as RAD30) in ternary complex with a cis-syn thymine-thymine (T-T) dimer and with undamaged DNA. The structures reveal that the ability of Poleta to replicate efficiently through the ultraviolet-induced lesion derives from a simple and yet elegant mechanism, wherein the two Ts of the T-T dimer are accommodated in an active site cleft that is much more open than in other polymerases. We also show by structural, biochemical and genetic analysis that the two Ts are maintained in a stable configuration in the active site via interactions with Gln 55, Arg 73 and Met 74. Together, these features define the basis for Poleta's action on ultraviolet-damaged DNA that is crucial in suppressing the mutagenic and carcinogenic consequences of sun exposure, thereby reducing the incidence of skin cancers in humans.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Saccharomyces cerevisiae/enzimología , Neoplasias Cutáneas/enzimología , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Daño del ADN , ADN Polimerasa Dirigida por ADN/genética , Humanos , Cinética , Modelos Moleculares , Mutación Missense , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , Dímeros de Pirimidina/química , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/genética , Neoplasias Cutáneas/genética , Relación Estructura-Actividad , Xerodermia Pigmentosa/enzimología , Xerodermia Pigmentosa/genética
16.
Nature ; 466(7305): 508-12, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20622854

RESUMEN

While reversible histone modifications are linked to an ever-expanding range of biological functions, the demethylases for histone H4 lysine 20 and their potential regulatory roles remain unknown. Here we report that the PHD and Jumonji C (JmjC) domain-containing protein, PHF8, while using multiple substrates, including H3K9me1/2 and H3K27me2, also functions as an H4K20me1 demethylase. PHF8 is recruited to promoters by its PHD domain based on interaction with H3K4me2/3 and controls G1-S transition in conjunction with E2F1, HCF-1 (also known as HCFC1) and SET1A (also known as SETD1A), at least in part, by removing the repressive H4K20me1 mark from a subset of E2F1-regulated gene promoters. Phosphorylation-dependent PHF8 dismissal from chromatin in prophase is apparently required for the accumulation of H4K20me1 during early mitosis, which might represent a component of the condensin II loading process. Accordingly, the HEAT repeat clusters in two non-structural maintenance of chromosomes (SMC) condensin II subunits, N-CAPD3 and N-CAPG2 (also known as NCAPD3 and NCAPG2, respectively), are capable of recognizing H4K20me1, and ChIP-Seq analysis demonstrates a significant overlap of condensin II and H4K20me1 sites in mitotic HeLa cells. Thus, the identification and characterization of an H4K20me1 demethylase, PHF8, has revealed an intimate link between this enzyme and two distinct events in cell cycle progression.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Línea Celular , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Células HeLa , Histona Demetilasas/química , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Metilación , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Factores de Transcripción/química , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
17.
Clin Genet ; 88(5): 489-493, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25410422

RESUMEN

Setleis syndrome is characterized by bitemporal scar-like lesions and other characteristic facial features. It results from recessive mutations that truncate critical functional domains in the basic helix-loop-helix (bHLH) transcription factor, TWIST2, which regulates expression of genes for facial development. To date, only four nonsense or small deletion mutations have been reported. In the current report, the clinical findings in a consanguineous Turkish family were characterized. Three affected siblings had the characteristic features of Setleis syndrome. Homozygosity for the first TWIST2 missense mutation, c.326T>C (p.Leu109Pro), was identified in the patients. In silico analyses predicted that the secondary structure of the mutant protein was sustained, but the empirical force field energy increased to an unfavorable level with the proline substitution (p.Leu109Pro). On a crystallographically generated dimer, p.Leu109 lies near the dimer interface, and the proline substitution is predicted to hinder dimer formation. Therefore, p.Leu109Pro-TWIST2 alters the three dimensional structure and is unable to dimerize, thereby hindering the binding of TWIST2 to its target genes involved in facial development.


Asunto(s)
Hipoplasia Dérmica Focal/genética , Mutación Missense , Proteínas Represoras/genética , Enfermedades de la Piel/genética , Proteína 1 Relacionada con Twist/genética , Adolescente , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Niño , Simulación por Computador , Cristalografía , Displasia Ectodérmica , Femenino , Hipoplasia Dérmica Focal/diagnóstico , Hipoplasia Dérmica Focal/patología , Displasias Dérmicas Faciales Focales , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Proteínas Represoras/metabolismo , Alineación de Secuencia , Enfermedades de la Piel/diagnóstico , Enfermedades de la Piel/patología , Turquía , Proteína 1 Relacionada con Twist/metabolismo , Población Blanca/genética
18.
Nat Commun ; 15(1): 4852, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844755

RESUMEN

A short prokaryotic Argonaute (pAgo) TIR-APAZ (SPARTA) defense system, activated by invading DNA to unleash its TIR domain for NAD(P)+ hydrolysis, was recently identified in bacteria. We report the crystal structure of SPARTA heterodimer in the absence of guide-RNA/target-ssDNA (2.66 Å) and a cryo-EM structure of the SPARTA oligomer (tetramer of heterodimers) bound to guide-RNA/target-ssDNA at nominal 3.15-3.35 Å resolution. The crystal structure provides a high-resolution view of SPARTA, revealing the APAZ domain as equivalent to the N, L1, and L2 regions of long pAgos and the MID domain containing a unique insertion (insert57). Cryo-EM structure reveals regions of the PIWI (loop10-9) and APAZ (helix αN) domains that reconfigure for nucleic-acid binding and decrypts regions/residues that reorganize to expose a positively charged pocket for higher-order assembly. The TIR domains amass in a parallel-strands arrangement for catalysis. We visualize SPARTA before and after RNA/ssDNA binding and uncover the basis of its active assembly leading to abortive infection.


Asunto(s)
Proteínas Argonautas , Microscopía por Crioelectrón , Proteínas Argonautas/metabolismo , Proteínas Argonautas/química , Proteínas Argonautas/genética , Cristalografía por Rayos X , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominios Proteicos , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/química , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Modelos Moleculares , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Unión Proteica
19.
Nat Struct Mol Biol ; 31(5): 767-776, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321146

RESUMEN

The bacterial cyclic oligonucleotide-based antiphage signaling system (CBASS) is similar to the cGAS-STING system in humans, containing an enzyme that synthesizes a cyclic nucleotide on viral infection and an effector that senses the second messenger for the antiviral response. Cap5, containing a SAVED domain coupled to an HNH DNA endonuclease domain, is the most abundant CBASS effector, yet the mechanism by which it becomes activated for cell killing remains unknown. We present here high-resolution structures of full-length Cap5 from Pseudomonas syringae (Ps) with second messengers. The key to PsCap5 activation is a dimer-to-tetramer transition, whereby the binding of second messenger to dimer triggers an open-to-closed transformation of the SAVED domains, furnishing a surface for assembly of the tetramer. This movement propagates to the HNH domains, juxtaposing and converting two HNH domains into states for DNA destruction. These results show how Cap5 effects bacterial cell suicide and we provide proof-in-principle data that the CBASS can be extrinsically activated to limit bacterial infections.


Asunto(s)
Proteínas Bacterianas , Nucleótidos Cíclicos , Pseudomonas syringae , Nucleótidos Cíclicos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Modelos Moleculares , Cristalografía por Rayos X , Sistemas de Mensajero Secundario , Multimerización de Proteína , Endonucleasas/metabolismo , Endonucleasas/química , Transducción de Señal , Humanos
20.
Nat Struct Mol Biol ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720088

RESUMEN

Rev1-Polζ-dependent translesion synthesis (TLS) of DNA is crucial for maintaining genome integrity. To elucidate the mechanism by which the two polymerases cooperate in TLS, we determined the cryogenic electron microscopic structure of the Saccharomyces cerevisiae Rev1-Polζ holocomplex in the act of DNA synthesis (3.53 Å). We discovered that a composite N-helix-BRCT module in Rev1 is the keystone of Rev1-Polζ cooperativity, interacting directly with the DNA template-primer and with the Rev3 catalytic subunit of Polζ. The module is positioned akin to the polymerase-associated domain in Y-family TLS polymerases and is set ideally to interact with PCNA. We delineate the full extent of interactions that the carboxy-terminal domain of Rev1 makes with Polζ and identify potential new druggable sites to suppress chemoresistance from first-line chemotherapeutics. Collectively, our results provide fundamental new insights into the mechanism of cooperativity between Rev1 and Polζ in TLS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA