Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(10): 1828-1849, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36084634

RESUMEN

Orofaciodigital syndrome (OFD) is a genetically heterogeneous ciliopathy characterized by anomalies of the oral cavity, face, and digits. We describe individuals with OFD from three unrelated families having bi-allelic loss-of-function variants in SCNM1 as the cause of their condition. SCNM1 encodes a protein recently shown to be a component of the human minor spliceosome. However, so far the effect of loss of SCNM1 function on human cells had not been assessed. Using a comparative transcriptome analysis between fibroblasts derived from an OFD-affected individual harboring SCNM1 mutations and control fibroblasts, we identified a set of genes with defective minor intron (U12) processing in the fibroblasts of the affected subject. These results were reproduced in SCNM1 knockout hTERT RPE-1 (RPE-1) cells engineered by CRISPR-Cas9-mediated editing and in SCNM1 siRNA-treated RPE-1 cultures. Notably, expression of TMEM107 and FAM92A encoding primary cilia and basal body proteins, respectively, and that of DERL2, ZC3H8, and C17orf75, were severely reduced in SCNM1-deficient cells. Primary fibroblasts containing SCNM1 mutations, as well as SCNM1 knockout and SCNM1 knockdown RPE-1 cells, were also found with abnormally elongated cilia. Conversely, cilia length and expression of SCNM1-regulated genes were restored in SCNM1-deficient fibroblasts following reintroduction of SCNM1 via retroviral delivery. Additionally, functional analysis in SCNM1-retrotransduced fibroblasts showed that SCNM1 is a positive mediator of Hedgehog (Hh) signaling. Our findings demonstrate that defective U12 intron splicing can lead to a typical ciliopathy such as OFD and reveal that primary cilia length and Hh signaling are regulated by the minor spliceosome through SCNM1 activity.


Asunto(s)
Ciliopatías , Síndromes Orofaciodigitales , Cilios/genética , Cilios/metabolismo , Ciliopatías/genética , Proteínas Hedgehog/metabolismo , Humanos , Intrones/genética , Mutación/genética , Síndromes Orofaciodigitales/genética , Empalme del ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Interferente Pequeño/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
2.
J Med Genet ; 61(7): 633-644, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38531627

RESUMEN

BACKGROUND: Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS: We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS: We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS: This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.


Asunto(s)
Síndrome de Ellis-Van Creveld , Linaje , Fenotipo , Humanos , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/patología , Masculino , Femenino , Niño , Proteínas de la Membrana/genética , Mutación , Preescolar , Proteína Gli3 con Dedos de Zinc/genética , Adolescente , Adulto , Proteínas del Tejido Nervioso/genética , Estudios de Cohortes , Lactante , Proteínas/genética , Estudios Retrospectivos , Péptidos y Proteínas de Señalización Intercelular
3.
Am J Med Genet A ; 194(1): 39-45, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37750049

RESUMEN

Abnormal hyperpolarization of the KCNK4 gene, expressed in the nervous system, brain, and periodontal ligament fibroblasts, leads to impaired neurotransmitter sensitivity, cardiac arrhythmias, and endocrine dysfunction, as well as, progressive cell proliferation. De novo gain of function variants in the KCNK4 gene were reported to cause a recognizable syndrome characterized by facial dysmorphism, hypertrichosis, epilepsy, intellectual/developmental delay, and gingival overgrowth (FHEIG, OMIM# 618381). FHEIG is extremely rare with only three reported cases in the literature. Herein, we describe the first inherited KCNK4 variant (c.730G>C, p.Ala244Pro) in an Egyptian boy and his mother. Variable phenotypic expressivity was noted as the patient presented with the full-blown picture of the syndrome while the mother presented only with hypertrichosis and gingival overgrowth without any neurological manifestations. The c.730G>C (p.Ala244Pro) variant was described before in a single patient and when comparing the phenotype with our patient, a phenotype-genotype correlation seems likely. Atrial fibrillation and joint laxity are new associated findings noted in our patient extending the clinical phenotype of the syndrome. Dental management was offered to the affected boy and a dramatic improvement was noted as the patient regained his smile, restored the mastication function, and resumed his psychological stability.


Asunto(s)
Fibromatosis Gingival , Sobrecrecimiento Gingival , Hipertricosis , Discapacidad Intelectual , Masculino , Humanos , Fibromatosis Gingival/diagnóstico , Fibromatosis Gingival/genética , Hipertricosis/genética , Linaje , Sobrecrecimiento Gingival/complicaciones , Fenotipo , Síndrome , Atención Odontológica/efectos adversos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Canales de Potasio/genética
4.
Am J Hum Genet ; 107(5): 977-988, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33058759

RESUMEN

PRKACA and PRKACB code for two catalytic subunits (Cα and Cß) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cß subunits of PKA during human development.


Asunto(s)
Anomalías Múltiples/genética , Disfunción Cognitiva/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Dedos/anomalías , Mutación de Línea Germinal , Defectos de los Tabiques Cardíacos/genética , Polidactilia/genética , Dedos del Pie/anomalías , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/patología , Adolescente , Adulto , Animales , Secuencia de Bases , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/patología , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/química , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/deficiencia , Femenino , Dedos/patología , Regulación del Desarrollo de la Expresión Génica , Defectos de los Tabiques Cardíacos/diagnóstico , Defectos de los Tabiques Cardíacos/patología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoenzimas/química , Holoenzimas/deficiencia , Holoenzimas/genética , Humanos , Recién Nacido , Masculino , Ratones , Modelos Moleculares , Mosaicismo , Células 3T3 NIH , Linaje , Polidactilia/diagnóstico , Polidactilia/patología , Estructura Secundaria de Proteína , Dedos del Pie/patología
5.
Am J Med Genet A ; 191(9): 2329-2336, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37377052

RESUMEN

Progressive pseudorheumatoid dysplasia (PPRD), a rare autosomal recessive syndrome, is a type of skeletal dysplasia associated with pain, stiffness, swelling of multiple joints, and the absence of destructive changes. PPRD occurs due to loss of function pathogenic variants in WISP3 (CCN6) gene, located on chromosome 6q22. In this study, 23 unrelated Egyptian PPRD patients were clinically diagnosed based on medical history, physical and radiological examinations, and laboratory investigations. Sequencing of the whole WISP3 (CCN6) exons and introns boundaries was carried out for all patients. A total of 11 different sequence variations were identified in the WISP3 (CCN6) gene, five of them were new pathogenic variants: the NM_003880.3: c.80T>A (p.L27*), c.161delG (p.C54fs*12), c.737T>C (p.Leu246Pro), c.347-1G>A (IVS3-1G>A), and c.376C>T (p.Q126*). The results of this study expand the spectrum of WISP3 (CCN6) pathogenic variants associated with PPRD. Clinical and genetic analysis is important for proper genetic counseling to curb this rare disorder in the families.


Asunto(s)
Artropatías , Humanos , Artropatías/genética , Artropatías/diagnóstico por imagen , Intrones , Exones , Proteínas CCN de Señalización Intercelular/genética , Radiografía
6.
Am J Med Genet A ; 191(8): 2100-2112, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37183573

RESUMEN

Biallelic variants in CHST3 gene result in congenital dislocation of large joints, club feet, short stature, rhizomelia, kypho-scoliosis, platyspondyly, epiphyseal dysplasia, flared metaphysis, in addition to minor cardiac lesions and hearing loss. Herein, we describe 14 new patients from 11 unrelated Egyptian families with CHST3-related skeletal dysplasia. All patients had spondyloepiphyseal changes that were progressive with age in addition to bifid distal ends of humeri which can be considered a diagnostic key in patients with CHST3 variants. They also shared peculiar facies with broad forehead, broad nasal tip, long philtrum and short neck. Rare unusual associated findings included microdontia, teeth spacing, delayed eruption, prominent angulation of the lumbar-sacral junction and atrial septal defect. Mutational analysis revealed 10 different homozygous CHST3 (NM_004273.5) variants including 7 missense, two frameshift and one nonsense variant. Of them, the c.384_391dup (p.Pro131Argfs*88) was recurrent in two families. Eight of these variants were not described before. Our study presents the largest series of patients with CHST3-related skeletal dysplasia from the same ethnic group. Furthermore, it reinforces that lethal cardiac involvement is a critical clinical finding of the disorder. Therefore, we believe that our study expands the phenotypic and mutational spectrum, and also highlights the importance of performing echocardiography in patients harboring CHST3 variants.


Asunto(s)
Enanismo , Osteocondrodisplasias , Humanos , Enanismo/diagnóstico por imagen , Enanismo/genética , Homocigoto , Mutación , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/genética , Carbohidrato Sulfotransferasas
7.
Osteoporos Int ; 33(7): 1501-1510, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35106624

RESUMEN

This study describes the clinical, radiological, and molecular data of four new patients with osteoporosis-pseudoglioma syndrome and assesses their response to bisphosphonate therapy. INTRODUCTION: Osteoporosis-pseudoglioma syndrome (OPPG) is a very rare disorder characterized mainly by severe juvenile osteoporosis and congenital blindness. OPPG is caused by biallelic mutations in the gene encoding low-density lipoprotein receptor-related protein 5 (LRP5). METHODS: We present the clinical, radiological, and molecular findings of four new patients with OPPG from Egypt. We also assessed patients' response to oral and intravenous bisphosphonate therapy. RESULTS: All patients had reduced bone mineral density (BMD) with variable number of fractures per year, in addition to bone abnormalities and the characteristic eye phenotype associated with OPPG. Mutation analyses of LRP5 gene revealed three different homozygous variants including two novel ones, c.7delG (p.A3Qfs*80) and c.3280G > A (p.E1094K). The c.3280G > A (p.E1094K) was recurrent in two unrelated patients who shared a unique haplotype suggesting a possible founder effect. The use of bisphosphonate therapy was beneficial; however, intravenous bisphosphonate administration led to a more favorable response. CONCLUSION: Our study described the phenotypic and genetic features of four patients with OPPG and identified two new LRP5 variants, thus expanding the mutational spectrum of OPPG. In addition, our study reinforces the efficiency of using intravenous bisphosphonates in the management of patients with OPPG.


Asunto(s)
Difosfonatos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Osteogénesis Imperfecta , Densidad Ósea/genética , Difosfonatos/uso terapéutico , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/tratamiento farmacológico , Osteogénesis Imperfecta/genética
8.
Am J Med Genet A ; 188(10): 2861-2868, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36097642

RESUMEN

Spondylo-epi-metaphyseal dysplasias (SEMDs) are a clinically and genetically heterogeneous group of skeletal dysplasias characterized by short stature and abnormal modeling of the spine and long bones. A novel form of rhizomelic skeletal dysplasia, Ain-Naz type, associated with a homozygous variant in GNPNAT1 was recently identified. Herein, we report an Egyptian patient, offspring of consanguineous parents, who presented with a severe form of unclassified SEMD. Whole exome sequencing identified a novel homozygous variant in exon 3, c.77T>G, (p.Phe26Cys) in GNPNAT1, that was confirmed by Sanger sequencing and both parents were found to be heterozygous for the identified variant. Main features included severe short stature, rhizomelic limb shortening, and wide flared metaphysis. Short broad long bones, brachydactyly, delayed epiphyseal ossification of long bones, advanced bone age, and immunodeficiency were additional findings expanding the clinical phenotype described in the previously reported family. We conclude that variants in the GNPNAT1 gene cause an autosomal recessive form of SEMD resembling Desbuquois like dysplasia caused by PGM3, which is involved in the same pathway as GNPNAT1.


Asunto(s)
Enanismo , Osteocondrodisplasias , Enanismo/diagnóstico por imagen , Enanismo/genética , Glucosamina 6-Fosfato N-Acetiltransferasa/genética , Heterocigoto , Humanos , Hiperplasia , Osteocondrodisplasias/genética , Fosfoglucomutasa/genética , Secuenciación del Exoma
9.
Am J Med Genet A ; 188(6): 1815-1825, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35278031

RESUMEN

Bruck Syndrome (BS) is a very rare disorder characterized by osteogenesis imperfecta (OI) associated with congenital contractures and is caused by mutations in FKBP10 or PLOD2 genes. Herein, we describe 13 patients from 9 unrelated Egyptian families with BS. All patients had white sclerae, recurrent fractures, kyphoscoliosis and osteoporosis with variable degrees of severity. Large joint contractures were seen in 11 patients, one patient had contractures of small interphalangeal joints, and one patient had no contractures. Unusual findings noted in individual patients included microcephaly, dental malocclusion, enamel hypoplasia, unilateral congenital dislocation of knee joint, prominent tailbone, and myopathy. Nine different variants were identified in FKBP10 and PLOD2 including five novel ones. FKBP10 variants were found in six families (67%) while PLOD2 variants were identified in three families (33%). The four families, with two affected sibs each, showed inter- and intrafamilial phenotypic variability. In conclusion, we report five novel variants in FKBP10 and PLOD2 thus, expanding the mutational spectrum of BS. In addition, our results expand the phenotypic spectrum, describe newly associated orodental findings, and further illustrate the phenotypic overlap between OI and Bruck syndrome supporting the suggestion of considering BS as a variant of OI rather than a separate entity.


Asunto(s)
Artrogriposis , Contractura , Anomalías Musculoesqueléticas , Osteogénesis Imperfecta , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Proteínas de Unión a Tacrolimus , Artrogriposis/diagnóstico , Artrogriposis/genética , Contractura/genética , Humanos , Anomalías Musculoesqueléticas/genética , Mutación , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Proteínas de Unión a Tacrolimus/genética
10.
Genet Med ; 23(4): 679-688, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33442026

RESUMEN

PURPOSE: This study aimed to identify the genetic cause of a new multiple congenital anomalies syndrome observed in three individuals from two unrelated families. METHODS: Clinical assessment was conducted prenatally and at different postnatal stages. Genetic studies included exome sequencing (ES) combined with single-nucleotide polymorphism (SNP) array based homozygosity mapping and trio ES. Dermal fibroblasts were used for functional assays. RESULTS: A clinically recognizable syndrome characterized by severe developmental delay, variable brain anomalies, congenital heart defects, dysmorphic facial features, and a distinctive type of synpolydactyly with an additional hypoplastic digit between the fourth and fifth digits of hands and/or feet was identified. Additional features included eye abnormalities, hearing impairment, and electroencephalogram anomalies. ES detected different homozygous truncating variants in MAPKAPK5 in both families. Patient-derived cells showed no expression of MAPKAPK5 protein isoforms and reduced levels of the MAPKAPK5-interacting protein ERK3. F-actin recovery after latrunculin B treatment was found to be less efficient in patient-derived fibroblasts than in control cells, supporting a role of MAPKAPK5 in F-actin polymerization. CONCLUSION: Our data indicate that loss-of-function variants in MAPKAPK5 result in a severe developmental disorder and reveal a major role of this gene in human brain, heart, and limb development.


Asunto(s)
Discapacidades del Desarrollo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Sindactilia , Niño , Discapacidades del Desarrollo/genética , Humanos , Fenotipo , Sindactilia/genética
11.
Hum Mutat ; 41(1): 265-276, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31549748

RESUMEN

Postaxial polydactyly (PAP) is a frequent limb malformation consisting in the duplication of the fifth digit of the hand or foot. Morphologically, this condition is divided into type A and B, with PAP-B corresponding to a more rudimentary extra-digit. Recently, biallelic truncating variants in the transcription factor GLI1 were reported to be associated with a recessive disorder, which in addition to PAP-A, may include syndromic features. Moreover, two heterozygous subjects carrying only one inactive copy of GLI1 were also identified with PAP. Herein, we aimed to determine the level of involvement of GLI1 in isolated PAP, a condition previously established to be autosomal dominantly inherited with incomplete penetrance. We analyzed the coding region of GLI1 in 95 independent probands with nonsyndromic PAP and found 11.57% of these subjects with single heterozygous pathogenic variants in this gene. The detected variants lead to premature termination codons or result in amino acid changes in the DNA-binding domain of GLI1 that diminish its transactivation activity. Family segregation analysis of these variants was consistent with dominant inheritance with incomplete penetrance. We conclude that heterozygous changes in GLI1 underlie a significant proportion of sporadic or familial cases of isolated PAP-A/B.


Asunto(s)
Dedos/anomalías , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Heterocigoto , Polidactilia/diagnóstico , Polidactilia/genética , Dedos del Pie/anomalías , Proteína con Dedos de Zinc GLI1/genética , Alelos , Sustitución de Aminoácidos , Femenino , Fibroblastos , Expresión Génica , Genes Dominantes , Genes Reporteros , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
12.
Am J Med Genet A ; 182(12): 2857-2866, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32949109

RESUMEN

Blepharophimosis-ptosis-intellectual disability syndrome (BPID) is an extremely rare recognizable blepharophimosis intellectual disability syndrome (BID). It is caused by biallelic variants in the UBE3B gene with only 24 patients described worldwide. Herein, we report on the clinical, brain imaging and molecular findings of additional nine patients from six unrelated Egyptian families. Patients presented with the characteristic features of the syndrome including blepharophimosis, ptosis, upslanted palpebral fissures with epicanthic folds, hypertelorism, long philtrum, high arched palate, micrognathia, microcephaly, and intellectual disability. Other findings were congenital heart disease (5 patients), talipes equinovarus (5 patients), genital anomalies (5 patients), autistic features (4 patients), cleft palate (2 patients), hearing loss (2 patients), and renal anomalies (1 patient). New or rarely reported findings were spherophakia, subvalvular aortic stenosis and hypoplastic nails, and terminal phalanges. Brain MRI, performed for 7 patients, showed hypogenesis or almost complete agenesis of corpus callosum. Genetic studies revealed five novel homozygous UBE3B variants. Of them, the c.1076G>A (p.W359*) was found in three patients from two unrelated families who shared similar haplotype suggesting a likely founder effect. Our results strengthen the clinical, dysmorphic, and brain imaging characteristic of this unique type of BID and extend the mutational spectrum associated with the disorder.


Asunto(s)
Blefarofimosis/genética , Homocigoto , Discapacidad Intelectual/genética , Mutación , Fenotipo , Anomalías Cutáneas/genética , Ubiquitina-Proteína Ligasas/genética , Anomalías Urogenitales/genética , Blefarofimosis/patología , Niño , Preescolar , Egipto , Femenino , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/patología , Masculino , Linaje , Anomalías Cutáneas/patología , Anomalías Urogenitales/patología
13.
Am J Med Genet A ; 182(6): 1407-1420, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32267100

RESUMEN

PCNT encodes a large coiled- protein localizing to pericentriolar material and is associated with microcephalic osteodysplastic primordial dwarfism type II syndrome (MOPD II). We report our experience of nine new patients from seven unrelated consanguineous Egyptian families with the distinctive clinical features of MOPD II in whom a customized NGS panel showed homozygous truncating variants of PCNT. The NGS panel results were validated thereafter using Sanger sequencing revealing three previously reported and three novel PCNT pathogenic variants. The core phenotype appeared homogeneous to what had been reported before although patients differed in the severity showing inter and intra familial variability. The orodental pattern showed atrophic alveolar ridge (five patients), rootless tooth (four patients), tooth agenesis (three patients), and malformed tooth (three patients). In addition, mesiodens was a novel finding found in one patient. The novel c.9394-1G>T variant was found in two sibs who had tooth agenesis. CNS anomalies with possible vascular sequelae were documented in two male patients (22.2%). Simplified gyral pattern with poor development of the frontal horns of lateral ventricles was seen in four patients and mild thinning of the corpus callosum in two patients. Unilateral coronal craniosynstosis was noted in one patient and thick but short corpus callosum was an unusual finding noted in another. The later has not been reported before. Our results refine the clinical, neuroradiological, and orodental features and expand the molecular spectrum of MOPD II.


Asunto(s)
Antígenos/genética , Enanismo/epidemiología , Enanismo/genética , Retardo del Crecimiento Fetal/epidemiología , Retardo del Crecimiento Fetal/genética , Predisposición Genética a la Enfermedad , Microcefalia/epidemiología , Microcefalia/genética , Osteocondrodisplasias/epidemiología , Osteocondrodisplasias/genética , Adolescente , Niño , Preescolar , Consanguinidad , Enanismo/complicaciones , Enanismo/patología , Egipto/epidemiología , Femenino , Retardo del Crecimiento Fetal/patología , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Masculino , Microcefalia/complicaciones , Microcefalia/patología , Mutación , Osteocondrodisplasias/complicaciones , Osteocondrodisplasias/patología , Fenotipo , Hermanos
14.
Genet Med ; 21(3): 545-552, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30214071

RESUMEN

PURPOSE: Congenital microcephaly (CM) is an important birth defect with long term neurological sequelae. We aimed to perform detailed phenotypic and genomic analysis of patients with Mendelian forms of CM. METHODS: Clinical phenotyping, targeted or exome sequencing, and autozygome analysis. RESULTS: We describe 150 patients (104 families) with 56 Mendelian forms of CM. Our data show little overlap with the genetic causes of postnatal microcephaly. We also show that a broad definition of primary microcephaly -as an autosomal recessive form of nonsyndromic CM with severe postnatal deceleration of occipitofrontal circumference-is highly sensitive but has a limited specificity. In addition, we expand the overlap between primary microcephaly and microcephalic primordial dwarfism both clinically (short stature in >52% of patients with primary microcephaly) and molecularly (e.g., we report the first instance of CEP135-related microcephalic primordial dwarfism). We expand the allelic and locus heterogeneity of CM by reporting 37 novel likely disease-causing variants in 27 disease genes, confirming the candidacy of ANKLE2, YARS, FRMD4A, and THG1L, and proposing the candidacy of BPTF, MAP1B, CCNH, and PPFIBP1. CONCLUSION: Our study refines the phenotype of CM, expands its genetics heterogeneity, and informs the workup of children born with this developmental brain defect.


Asunto(s)
Microcefalia/genética , Microcefalia/fisiopatología , Adulto , Niño , Preescolar , Enanismo/genética , Femenino , Genómica/métodos , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Mutación/genética , Linaje , Fenotipo , Secuenciación del Exoma/métodos
15.
Am J Med Genet A ; 179(2): 237-242, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30575274

RESUMEN

GAPO syndrome is a very rare disorder characterized by growth retardation, alopecia, pseudoanodontia and progressive optic atrophy. It is caused by biallelic mutations in the ANTXR1 gene. Herein, we describe the clinical and molecular findings of seven new patients with GAPO syndrome. Our patients presented with the characteristic clinical features of the syndrome except for one patient who did not display total alopecia till the age of two years. Strikingly, optic atrophy and glaucoma were observed in all patients and one patient showed keratopathy in addition. Moreover, craniosynstosis was an unusual associated finding in one patient. Mutational analysis of ANTXR1 gene identified five novel homozygous mutations including two frameshift, two splice site and a large intragenic deletion of exon 3. Our results reinforce the clinical characteristics of the syndrome, expand the mutational spectrum and provide more insights into the role of the ANTXR1 protein in the regulation of extracellular matrix.


Asunto(s)
Alopecia/genética , Anodoncia/genética , Trastornos del Crecimiento/genética , Proteínas de Microfilamentos/genética , Atrofias Ópticas Hereditarias/genética , Atrofia Óptica/genética , Receptores de Superficie Celular/genética , Eliminación de Secuencia/genética , Alopecia/patología , Anodoncia/patología , Niño , Preescolar , Femenino , Trastornos del Crecimiento/patología , Homocigoto , Humanos , Lactante , Masculino , Atrofias Ópticas Hereditarias/patología , Atrofia Óptica/patología
16.
J Med Genet ; 55(4): 278-284, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358272

RESUMEN

BACKGROUND: Stüve-Wiedemann syndrome (SWS) is characterised by bowing of the lower limbs, respiratory distress and hyperthermia that are often responsible for early death. Survivors develop progressive scoliosis and spontaneous fractures. We previously identified LIFR mutations in most SWS cases, but absence of LIFR pathogenic changes in five patients led us to perform exome sequencing and to identify homozygosity for a FAM46A mutation in one case [p.Ser205Tyrfs*13]. The follow-up of this case supported a final diagnosis of osteogenesis imperfecta (OI), based on vertebral collapses and blue sclerae. METHODS AND RESULTS: This prompted us to screen FAM46A in 25 OI patients with no known mutations.We identified a homozygous deleterious variant in FAM46A in two affected sibs with typical OI [p.His127Arg]. Another homozygous variant, [p.Asp231Gly], also classed as deleterious, was detected in a patient with type III OI of consanguineous parents using homozygosity mapping and exome sequencing.FAM46A is a member of the superfamily of nucleotidyltransferase fold proteins but its exact function is presently unknown. Nevertheless, there are lines of evidence pointing to a relevant role of FAM46A in bone development. By RT-PCR analysis, we detected specific expression of FAM46A in human osteoblasts andinterestingly, a nonsense mutation in Fam46a has been recently identified in an ENU-derived (N-ethyl-N-nitrosourea) mouse model characterised by decreased body length, limb, rib, pelvis, and skull deformities and reduced cortical thickness in long bones. CONCLUSION: We conclude that FAM46A mutations are responsible for a severe form of OI with congenital bowing of the lower limbs and suggest screening this gene in unexplained OI forms.


Asunto(s)
Secuenciación del Exoma , Osteoblastos/metabolismo , Osteogénesis Imperfecta/genética , Proteínas/genética , Animales , Desarrollo Óseo/genética , Huesos/patología , Consanguinidad , Femenino , Genes Recesivos/genética , Homocigoto , Humanos , Lactante , Masculino , Ratones , Mutación , Osteoblastos/patología , Osteogénesis Imperfecta/fisiopatología , Linaje , Fenotipo , Polinucleotido Adenililtransferasa
17.
Genet Med ; 20(12): 1609-1616, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29620724

RESUMEN

PURPOSE: To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized. METHODS: Detailed phenotyping and next-generation sequencing (panel and exome). RESULTS: Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average. CONCLUSION: By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.


Asunto(s)
Exoma/genética , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Anomalías Musculoesqueléticas/genética , Alelos , Proteínas Sanguíneas/genética , Hidrolasas de Éster Carboxílico , Estudios de Cohortes , Exorribonucleasas/genética , Femenino , Proteínas Fetales/genética , Efecto Fundador , Genética de Población , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas de la Membrana/genética , Anomalías Musculoesqueléticas/clasificación , Anomalías Musculoesqueléticas/patología , Proteínas de Neoplasias/genética , Proteínas Oncogénicas/genética , Fenotipo , Receptores de Superficie Celular/genética , Proteína Wnt3A/genética
18.
Am J Med Genet A ; 176(11): 2446-2450, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30244542

RESUMEN

We report two discordant clinical and imaging features in four male patients from two unrelated families of Egyptian descent with hemizygous pathogenic variants in PQBP1. The three patients of the first family displayed the typical features underlying PQBP1 such as the long triangular face, bulbous nose, hypoplastic malar region, and micrognathia, which were subsequently confirmed using targeted sequence analysis that showed a previously reported nonsense mutation c.586C>T p.R196*. Whole exome sequencing identified a novel missense PQBP1 variant c.530G>A:p.R177H in the second family, in which the index patient presented with intellectual disability and dysmorphic facial features reminiscent of Kabuki-like syndrome and his brain magnetic resonance imaging revealed partial agenesis of corpus callosum, mild vermis, and brainstem hypoplasia. These imaging features are distinct from the previously described with a well-known phenotype that is already known for PQBP1. This report expands the phenotypic spectrum of PQBP1-related disorders and is the second reported missense PQBP1 variant. Further, it highlights the possible role of PQBP1 in hindbrain development.


Asunto(s)
Proteínas Portadoras/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Proteínas Nucleares/genética , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Proteínas de Unión al ADN , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Fenotipo
19.
Am J Med Genet A ; 176(5): 1190-1194, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29681084

RESUMEN

We report two unrelated boys with frontonasal dysplasias type-2 (FND-2) who shared an identical novel homozygous ALX4 mutation c.291delG (p.Q98Sfs*83). Both patients presented with a large skull defect but one had bilateral parietal meningocele-like cysts that lie along with the bony defect and increased in size with age. Scalp alopecia, hypertelorism, and clefted alae nasi were also detected in both of them. Furthermore, impalpable gonads were noted, being unilateral in one and bilateral in the other. Neuroimaging showed small dysplastic occipital lobes with dysgyria and midline subarachnoid cyst. Additional dysplastic corpus callosum and small cerebellar vermis were observed in one patient. Parietal foramina were noted in the parents of one patient. Our findings highlight the dosage effect of ALX4 and underscore the challenges of prenatal genetic counseling. Further, the indirect role of ALX4 in the development of the occipital lobe and posterior fossa is discussed.


Asunto(s)
Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Proteínas de Unión al ADN/genética , Cara/anomalías , Homocigoto , Mutación , Fenotipo , Factores de Transcripción/genética , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Preescolar , Análisis Mutacional de ADN , Estudios de Asociación Genética , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Reacción en Cadena de la Polimerasa
20.
Hum Mol Genet ; 24(14): 4126-37, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25908617

RESUMEN

Most patients with Ellis-van Creveld syndrome (EvC) are identified with pathogenic changes in EVC or EVC2, however further genetic heterogeneity has been suggested. In this report we describe pathogenic splicing variants in WDR35, encoding retrograde intraflagellar transport protein 121 (IFT121), in three families with a clinical diagnosis of EvC but having a distinctive phenotype. To understand why WDR35 variants result in EvC, we analysed EVC, EVC2 and Smoothened (SMO) in IFT-A deficient cells. We found that the three proteins failed to localize to Wdr35(-/-) cilia, but not to the cilium of the IFT retrograde motor mutant Dync2h1(-/-), indicating that IFT121 is specifically required for their entry into the ciliary compartment. Furthermore expression of Wdr35 disease cDNAs in Wdr35(-/-) fibroblasts revealed that the newly identified variants lead to Hedgehog signalling defects resembling those of Evc(-/-) and Evc2(-/-) mutants. Together our data indicate that splicing variants in WDR35, and possibly in other IFT-A components, underlie a number of EvC cases by disrupting targeting of both the EvC complex and SMO to cilia.


Asunto(s)
Cilios/metabolismo , Síndrome de Ellis-Van Creveld/genética , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Células Cultivadas , Preescolar , Proteínas del Citoesqueleto , Exoma , Exones , Fibroblastos/metabolismo , Variación Genética , Proteínas Hedgehog , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Linaje , Fenotipo , Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Receptor Smoothened
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA