Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
JCO Clin Cancer Inform ; 5: 550-560, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33989016

RESUMEN

PURPOSE: Key oncology end points are not routinely encoded into electronic medical records (EMRs). We assessed whether natural language processing (NLP) can abstract treatment discontinuation rationale from unstructured EMR notes to estimate toxicity incidence and progression-free survival (PFS). METHODS: We constructed a retrospective cohort of 6,115 patients with early-stage and 701 patients with metastatic breast cancer initiating care at Memorial Sloan Kettering Cancer Center from 2008 to 2019. Each cohort was divided into training (70%), validation (15%), and test (15%) subsets. Human abstractors identified the clinical rationale associated with treatment discontinuation events. Concatenated EMR notes were used to train high-dimensional logistic regression and convolutional neural network models. Kaplan-Meier analyses were used to compare toxicity incidence and PFS estimated by our NLP models to estimates generated by manual labeling and time-to-treatment discontinuation (TTD). RESULTS: Our best high-dimensional logistic regression models identified toxicity events in early-stage patients with an area under the curve of the receiver-operator characteristic of 0.857 ± 0.014 (standard deviation) and progression events in metastatic patients with an area under the curve of 0.752 ± 0.027 (standard deviation). NLP-extracted toxicity incidence and PFS curves were not significantly different from manually extracted curves (P = .95 and P = .67, respectively). By contrast, TTD overestimated toxicity in early-stage patients (P < .001) and underestimated PFS in metastatic patients (P < .001). Additionally, we tested an extrapolation approach in which 20% of the metastatic cohort were labeled manually, and NLP algorithms were used to abstract the remaining 80%. This extrapolated outcomes approach resolved PFS differences between receptor subtypes (P < .001 for hormone receptor+/human epidermal growth factor receptor 2- v human epidermal growth factor receptor 2+ v triple-negative) that could not be resolved with TTD. CONCLUSION: NLP models are capable of abstracting treatment discontinuation rationale with minimal manual labeling.


Asunto(s)
Neoplasias de la Mama , Procesamiento de Lenguaje Natural , Algoritmos , Neoplasias de la Mama/epidemiología , Registros Electrónicos de Salud , Femenino , Humanos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA