Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 241, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413482

RESUMEN

The present work aimed to develop, characterize, and evaluate the antibacterial and antibiofilm activity of two nanoemulsions (NEs) containing 500 µg/mL of curcumin from Curcuma longa (CUR). These NEs, produced with heating, contain olive oil (5%) and the surfactants tween 80 (5%) and span 80 (2.5%), water q.s. 100 mL, and were stable for 120 days. NE-2-CUR presented Ø of 165.40 ± 2.56 nm, PDI of 0.254, ζ of - 33.20 ± 1.35 mV, pH of 6.49, and Entrapment Drug Efficiency (EE) of 99%. The NE-4-CUR showed a Ø of 105.70 ± 4.13 nm, PDI of 0.459, ζ of - 32.10 ± 1.45 mV, pH of 6.40 and EE of 99.29%. Structural characterization was performed using DRX and FTIR, thermal characterization using DSC and TG, and morphological characterization using SEM, suggesting that there is no significant change in the CUR present in the NEs and that they remain stable. The MIC was performed by the broth microdilution method for nine gram-positive and gram-negative bacteria, as well as Klebsiella pneumoniae clinical isolates resistant to antibiotics and biofilm and efflux pump producers. The NEs mostly showed a bacteriostatic profile. The MIC varied between 125 and 250 µg/mL. The most sensitive bacteria were Staphylococcus aureus and Enterococcus faecalis, for which NE-2-CUR showed a MIC of 125 µg/mL. The NEs and ceftazidime (CAZ) interaction was also evaluated against the K. pneumoniae resistant clinical isolates using the Checkerboard method. NE-2-CUR and NE-4-CUR showed a synergistic or additive profile; there was a reduction in CAZ MICs between 256 times (K26-A2) and 2 times (K29-A2). Furthermore, the NEs inhibited these isolates biofilms formation. The NEs showed a MBIC ranging from 15.625 to 250 µg/mL. Thus, the NEs showed physicochemical characteristics suitable for future clinical trials, enhancing the CAZ antibacterial and antibiofilm activity, thus becoming a promising strategy for the treatment of bacterial infections caused by multidrug-resistant K. pneumoniae. KEY POINTS: • The NEs showed physicochemical characteristics suitable for future clinical trials. • The NEs showed a synergistic/additive profile, when associated with ceftazidime. • The NEs inhibited biofilm formation of clinical isolates.


Asunto(s)
Antiinfecciosos , Curcumina , Antibacterianos/farmacología , Ceftazidima/farmacología , Curcumina/farmacología , Curcumina/química , Aceite de Oliva/farmacología , Bacterias Grampositivas , Bacterias Gramnegativas , Antiinfecciosos/farmacología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana
2.
Appl Microbiol Biotechnol ; 106(11): 3973-3984, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35670851

RESUMEN

The discovery of antibiotics in the twentieth century made it possible to treat bacterial infections and revolutionized modern medicine. However, gradually, it is possible to perceive a decrease in the effectiveness of antimicrobial agents against pathogenic isolates, which, together with the low investment in the discovery and/or development of new antibiotics by large pharmaceutical companies since the 1960s, makes it increasingly difficult to treatment of infections caused by these microorganisms. The search for strategies capable of potentiating the effect of existing drugs through the development of new therapeutic approaches, which also have the potential to circumvent bacterial resistance to antibiotics, has become indispensable. In this context, metallic nanoparticles stand out, as they could be used to act synergistically with drugs. Thus, the objective of this review was to present the latest information on the synergistic activity of antibiotics with metallic nanoparticles, pointing out this association as a promising alternative for the preservation of bacterial sensitivity to these drugs. The different metallic nanoparticles can present different benefits in the treatment of bacterial infections, with this being able to potentiate the bacterial activity of antibiotics that are widely used in the clinic, being able to increase the susceptibility in multiresistant microorganisms. KEY POINTS: • Metallic nanoparticles increased the antimicrobial action of drugs; • Metallic nanoparticles compromise the action of bacterial efflux pumps; • Biofilm formation was inhibited after treatment with metallic nanoparticles.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Nanopartículas del Metal , Nanopartículas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Humanos , Nanopartículas del Metal/uso terapéutico
3.
Curr Microbiol ; 78(10): 3609-3619, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34432112

RESUMEN

Due to the deaths from infections caused by multidrug-resistant microorganisms worldwide, the World Health Organization considers antibiotic resistance to be a critical global public health problem. Bacterial resistance mechanisms are diverse and can be acquired through the overexpression of transmembrane proteins that are called efflux pumps, which act by expelling drugs from the intracellular environment, thereby preventing their action and contributing to the severity of infections. Efflux pumps are one of the main mechanisms of bacterial resistance, and it is important to identify new molecules that are capable of inhibiting the action of efflux pumps and circumvent the problem of resistance linked to the expression of these transmembrane proteins. The plants are promising candidates for obtaining biologically active substances, such as essential oils, with antimicrobial activity and inhibitors of efflux pumps, which can help in the resensitization of bacterial strains resistant to antibiotics. Therefore, this review aims to present the recently reported inhibitory activity of essential oils against bacterial pathogens that produce efflux pumps.


Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Aceites Volátiles , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/farmacología , Farmacorresistencia Bacteriana Múltiple , Humanos , Aceites Volátiles/farmacología
4.
Biology (Basel) ; 13(5)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38785836

RESUMEN

The present study aimed to evaluate the in vitro antibacterial and antibiofilm activity of bacterial cellulose hydrogel produced by Zoogloea sp. (HYDROGEL) containing vancomycin (VAN) against bacterial strains that cause wound infections, such as multidrug-resistant (MDR) Staphylococcus aureus and Staphylococcus epidermidis. Initially, HYDROGEL was obtained from sugar cane molasses, and scanning electron microscopy (SEM) was performed to determine morphological characteristics. Then, VAN was incorporated into HYDROGEL (VAN-HYDROGEL). The antibacterial activity of VAN, HYDROGEL, and VAN-HYDROGEL was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against methicillin-sensitive S. aureus (MSSA) ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 33591, S. epidermidis INCQS 00016 (ATCC 12228), five clinical isolates of MRSA, and nine clinical isolates of methicillin-resistant S. epidermidis, following the Clinical and Laboratory Standards Institute (CLSI) guidelines. Additionally, the antibacterial activity of VAN, HYDROGEL, and VAN-HYDROGEL was studied using the time-kill assay. Subsequently, the antibiofilm activity of VAN, HYDROGEL, and VAN-HYDROGEL was evaluated using crystal violet and Congo red methods, as well as SEM analysis. VAN and VAN-HYDROGEL showed bacteriostatic and bactericidal activity against MRSA and methicillin-resistant S. epidermidis strains. HYDROGEL did not show any antibacterial activity. Analysis of the time-kill assay indicated that HYDROGEL maintained the antibacterial efficacy of VAN, highlighting its efficiency as a promising carrier. Regarding antibiofilm activity, VAN and HYDROGEL inhibited biofilm formation but did not demonstrate biofilm eradication activity against methicillin-resistant S. aureus and S. epidermidis strains. However, it was observed that the biofilm eradication potential of VAN was enhanced after incorporation into HYDROGEL, a result also proven through images obtained by SEM. From the methods carried out in this study, it was possible to observe that HYDROGEL preserved the antibacterial activity of vancomycin, aside from exhibiting antibiofilm activity and enhancing the antibiofilm effect of VAN. In conclusion, this study demonstrated the potential of HYDROGEL as a candidate and/or vehicle for antibiotics against MDR bacteria that cause wound infections.

5.
Braz J Microbiol ; 54(2): 1009-1020, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36943639

RESUMEN

The incidence of infections caused by resistant Gram-negative pathogens has become a critical factor in public health due to the limitation of therapeutic options for the control of infections caused, especially, by Enterobacteriaceae (Escherichia coli and Klebsiella pneumoniae), Pseudomonas spp., and Acinetobacter spp. Thus, given the increase in resistant pathogens and the reduction of therapeutic options, polymyxins were reintroduced into the clinic. As the last treatment option, polymyxins were regarded as the therapeutic key, since they were one of the few classes of antimicrobials that had activity against multidrug-resistant Gram-negative bacilli. Nonetheless, over the years, the frequent use of this antimicrobial has led to reports of resistance cases. In 2015, mcr (mobile colistin resistance), a colistin resistance gene, was described in China. Due to its location on carrier plasmids, this gene is characterized by rapid spread through conjugation. It has thus been classified as a rising threat to public health worldwide. In conclusion, based on several reports that show the emergence of mcr in different regional and climatic contexts and species of isolates, this work aims to review the literature on the incidence of the mcr gene in Brazil in different regions, types of samples identified, species of isolates, and type of carrier plasmid.


Asunto(s)
Colistina , Proteínas de Escherichia coli , Colistina/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Brasil/epidemiología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Polimixinas/uso terapéutico , Proteínas de Escherichia coli/genética , Plásmidos/genética , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA