Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Glia ; 69(3): 532-545, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32956517

RESUMEN

Δ9 -Tetrahydrocannabinol (THC), the main bioactive compound found in the plant Cannabis sativa, exerts its effects by activating cannabinoid receptors present in many neural cells. Cannabinoid receptors are also physiologically engaged by endogenous cannabinoid compounds, the so-called endocannabinoids. Specifically, the endocannabinoid 2-arachidonoylglycerol has been highlighted as an important modulator of oligodendrocyte (OL) development at embryonic stages and in animal models of demyelination. However, the potential impact of THC exposure on OL lineage progression during the critical periods of postnatal myelination has never been explored. Here, we show that acute THC administration at early postnatal ages in mice enhanced OL development and CNS myelination in the subcortical white matter by promoting oligodendrocyte precursor cell cycle exit and differentiation. Mechanistically, THC-induced-myelination was mediated by CB1 and CB2 cannabinoid receptors, as demonstrated by the blockade of THC actions by selective receptor antagonists. Moreover, the THC-mediated modulation of oligodendroglial differentiation relied on the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, as mTORC1 pharmacological inhibition prevented the THC effects. Our study identifies THC as an effective pharmacological strategy to enhance oligodendrogenesis and CNS myelination in vivo.


Asunto(s)
Dronabinol , Endocannabinoides , Animales , Dronabinol/farmacología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Oligodendroglía , Receptores de Cannabinoides
2.
Stem Cells ; 35(2): 362-373, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27612935

RESUMEN

Induced pluripotent stem cells (iPSCs) can be differentiated in vitro and in vivo to all cardiovascular lineages and are therefore a promising cell source for cardiac regenerative therapy. However, iPSC lines do not all differentiate into cardiomyocytes (CMs) with the same efficiency. Here, we show that telomerase-competent iPSCs with relatively long telomeres and high expression of the shelterin-complex protein TRF1 (iPSChighT ) differentiate sooner and more efficiently into CMs than those with relatively short telomeres and low TRF1 expression (iPSClowT ). Ascorbic acid, an enhancer of cardiomyocyte differentiation, further increases the cardiomyocyte yield from iPSChighT but does not rescue the cardiomyogenic potential of iPSClowT . Interestingly, although iPSCslowT differentiate very poorly to the mesoderm and endoderm lineages, they differentiate very efficiently to the ectoderm lineage, indicating that cell fate can be determined by in vitro selection of iPSCs with different telomere content. Our findings highlight the importance of selecting iPSCs with ample telomere reserves in order to generate high numbers of CMs in a fast, reliable, and efficient way. Stem Cells 2017;35:362-373.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Homeostasis del Telómero , Animales , Ácido Ascórbico/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Colágeno/metabolismo , Cuerpos Embrioides/citología , Cuerpos Embrioides/metabolismo , Ratones , Miocitos Cardíacos/efectos de los fármacos , Homeostasis del Telómero/efectos de los fármacos
3.
Cereb Cortex ; 25(9): 2395-408, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24610119

RESUMEN

The CB1 cannabinoid receptor regulates cortical progenitor proliferation during embryonic development, but the molecular mechanism of this action remains unknown. Here, we report that CB1-deficient mouse embryos show premature cell cycle exit, decreased Pax6- and Tbr2-positive cell number, and reduced mammalian target of rapamycin complex 1 (mTORC1) activation in the ventricular and subventricular cortical zones. Pharmacological stimulation of the CB1 receptor in cortical slices and progenitor cell cultures activated the mTORC1 pathway and increased the number of Pax6- and Tbr2-expressing cells. Likewise, acute CB1 knockdown in utero reduced mTORC1 activation and cannabinoid-induced Tbr2-positive cell generation. Luciferase reporter and chromatin immunoprecipitation assays revealed that the CB1 receptor drives Tbr2 expression downstream of Pax6 induction in an mTORC1-dependent manner. Altogether, our results demonstrate that the CB1 receptor tunes dorsal telencephalic progenitor proliferation by sustaining the transcriptional activity of the Pax6-Tbr2 axis via the mTORC1 pathway, and suggest that alterations of CB1 receptor signaling, by producing the missexpression of progenitor identity determinants may contribute to neurodevelopmental alterations.


Asunto(s)
Corteza Cerebral , Regulación del Desarrollo de la Expresión Génica/genética , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/genética , Células Madre/fisiología , Proteínas de Dominio T Box/metabolismo , Animales , Animales Recién Nacidos , Técnicas de Cultivo de Célula , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Embrión de Mamíferos , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Antígeno Ki-67/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Transgénicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Cultivo de Órganos , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor Cannabinoide CB1/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas de Dominio T Box/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
4.
J Neurosci ; 32(47): 16651-65, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23175820

RESUMEN

The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB(1) cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB(1) receptor, by preventing Satb2 (special AT-rich binding protein 2)-mediated repression, increased Ctip2 (COUP-TF interacting protein 2) promoter activity, and Ctip2-positive neuron generation. Unbalanced neurogenic fate determination found in complete CB(1)(-/-) mice and in glutamatergic neuron-specific Nex-CB(1)(-/-) mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB(1) receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB(1) receptor contributes to the generation of deep-layer cortical neurons by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/fisiología , Neuronas Motoras/fisiología , Células Piramidales/fisiología , Tractos Piramidales/fisiología , Receptor Cannabinoide CB1/fisiología , Proteínas Represoras/fisiología , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Conducta Animal/fisiología , Proliferación Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/fisiología , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Noqueados , Microscopía Confocal , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/fisiología , Proteína Quinasa C/metabolismo , Tractos Piramidales/citología , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Brain ; 134(Pt 1): 119-36, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20929960

RESUMEN

Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntington's disease and animal models. However, the pathophysiological impact of this loss of receptors in Huntington's disease is as yet unknown. Here, we generated a double-mutant mouse model that expresses human mutant huntingtin exon 1 in a type 1 cannabinoid receptor-null background, and found that receptor deletion aggravates the symptoms, neuropathology and molecular pathology of the disease. Moreover, pharmacological administration of the cannabinoid Δ(9)-tetrahydrocannabinol to mice expressing human mutant huntingtin exon 1 exerted a therapeutic effect and ameliorated those parameters. Experiments conducted in striatal cells show that the mutant huntingtin-dependent downregulation of the receptors involves the control of the type 1 cannabinoid receptor gene promoter by repressor element 1 silencing transcription factor and sensitizes cells to excitotoxic damage. We also provide in vitro and in vivo evidence that supports type 1 cannabinoid receptor control of striatal brain-derived neurotrophic factor expression and the decrease in brain-derived neurotrophic factor levels concomitant with type 1 cannabinoid receptor loss, which may contribute significantly to striatal damage in Huntington's disease. Altogether, these results support the notion that downregulation of type 1 cannabinoid receptors is a key pathogenic event in Huntington's disease, and suggest that activation of these receptors in patients with Huntington's disease may attenuate disease progression.


Asunto(s)
Cuerpo Estriado/metabolismo , Enfermedad de Huntington/genética , Neuronas/metabolismo , Receptor Cannabinoide CB1/genética , Análisis de Varianza , Animales , Western Blotting , Supervivencia Celular , Dronabinol/farmacología , Hormona Liberadora de Hormona del Crecimiento/análogos & derivados , Enfermedad de Huntington/metabolismo , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Prueba de Desempeño de Rotación con Aceleración Constante
6.
Front Neuroanat ; 16: 1030060, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387996

RESUMEN

Adult oligodendrocyte progenitor cells (OPCs) give rise to myelinating oligodendrocytes through life and play crucial roles in brain homeostasis and plasticity during health and disease. Cannabinoid compounds acting through CB1 receptors promote the proliferation and differentiation of OPCs in vitro and facilitate developmental myelination and myelin repair in vivo. However, CB1 receptor expression in adult OPCs in situ has not been corroborated by anatomical studies and the contribution of this receptor population to the (re)myelination effects of cannabinoids remains a matter of debate. Using electron microscopy methods applied to NG2-EYFP reporter mice we assessed the localization of CB1 receptors in OPCs of the adult mouse hippocampus. To control for the specificity of CB1 receptor immunostaining we generated transgenic mice bearing EYFP expression in NG2 glia and wild-type (NG2-EYFP-CB1 +/+) and knockout (NG2-EYFP-CB1 -/-) for CB1 receptors. Double immunogold and immunoperoxidase labeling for CB1 and EYFP, respectively, revealed that CB1 receptors are present in a low proportion of NG2 positive profiles within hippocampal stratum radiatum of NG2-EYFP-CB1 +/+ mice. Quantitative analysis of immunogold particles in synaptic structures and NG2 profiles showed that CB1 receptors are expressed at lower density in adult OPCs than in glutamatergic cells of the rodent hippocampus. These results highlight the presence of CB1 receptors in adult OPCs thus providing an anatomical substrate for the remyelination promoting effects of cannabinoids and open a novel perspective on the roles of the endocannabinoid system in brain physiology through the modulation of NG2 glia.

7.
Cell Death Dis ; 13(7): 585, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798697

RESUMEN

Cannabinoids are known to modulate oligodendrogenesis and developmental CNS myelination. However, the cell-autonomous action of these compounds on oligodendroglial cells in vivo, and the molecular mechanisms underlying these effects have not yet been studied. Here, by using oligodendroglial precursor cell (OPC)-targeted genetic mouse models, we show that cannabinoid CB1 receptors exert an essential role in modulating OPC differentiation at the critical periods of postnatal myelination. We found that selective genetic inactivation of CB1 receptors in OPCs in vivo perturbs oligodendrogenesis and postnatal myelination by altering the RhoA/ROCK signaling pathway, leading to hypomyelination, and motor and cognitive alterations in young adult mice. Conversely, pharmacological CB1 receptor activation, by inducing E3 ubiquitin ligase-dependent RhoA proteasomal degradation, promotes oligodendrocyte development and CNS myelination in OPCs, an effect that was not evident in OPC-specific CB1 receptor-deficient mice. Moreover, pharmacological inactivation of ROCK in vivo overcomes the defects in oligodendrogenesis and CNS myelination, and behavioral alterations found in OPC-specific CB1 receptor-deficient mice. Overall, this study supports a cell-autonomous role for CB1 receptors in modulating oligodendrogenesis in vivo, which may have a profound impact on the scientific knowledge and therapeutic manipulation of CNS myelination by cannabinoids.


Asunto(s)
Cannabinoides , Células Precursoras de Oligodendrocitos , Receptor Cannabinoide CB1 , Animales , Cannabinoides/farmacología , Diferenciación Celular/fisiología , Silenciador del Gen , Ratones , Vaina de Mielina/metabolismo , Células Precursoras de Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Receptor Cannabinoide CB1/metabolismo
8.
Proc Natl Acad Sci U S A ; 105(25): 8760-5, 2008 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-18562289

RESUMEN

Endocannabinoids (eCBs) have recently been identified as axon guidance cues shaping the connectivity of local GABAergic interneurons in the developing cerebrum. However, eCB functions during pyramidal cell specification and establishment of long-range axonal connections are unknown. Here, we show that eCB signaling is operational in subcortical proliferative zones from embryonic day 12 in the mouse telencephalon and controls the proliferation of pyramidal cell progenitors and radial migration of immature pyramidal cells. When layer patterning is accomplished, developing pyramidal cells rely on eCB signaling to initiate the elongation and fasciculation of their long-range axons. Accordingly, CB(1) cannabinoid receptor (CB(1)R) null and pyramidal cell-specific conditional mutant (CB(1)R(f/f,NEX-Cre)) mice develop deficits in neuronal progenitor proliferation and axon fasciculation. Likewise, axonal pathfinding becomes impaired after in utero pharmacological blockade of CB(1)Rs. Overall, eCBs are fundamental developmental cues controlling pyramidal cell development during corticogenesis.


Asunto(s)
Axones/metabolismo , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Células Piramidales/metabolismo , Transducción de Señal , Animales , Antagonistas de Receptores de Cannabinoides , Diferenciación Celular , Femenino , Humanos , Ratones , Ratones Transgénicos , Embarazo , Células Piramidales/citología , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo
9.
Br J Pharmacol ; 178(20): 4176-4192, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34216154

RESUMEN

BACKGROUND AND PURPOSE: Research on demyelinating disorders aims to find novel molecules that are able to induce oligodendrocyte precursor cell differentiation to promote central nervous system remyelination and functional recovery. Δ9 -Tetrahydrocannabinol (THC), the most prominent active constituent of the hemp plant Cannabis sativa, confers neuroprotection in animal models of demyelination. However, the possible effect of THC on myelin repair has never been studied. EXPERIMENTAL APPROACH: By using oligodendroglia-specific reporter mouse lines in combination with two models of toxin-induced demyelination, we analysed the effect of THC on the processes of oligodendrocyte regeneration and functional remyelination. KEY RESULTS: We show that THC administration enhanced oligodendrocyte regeneration, white matter remyelination and motor function recovery. THC also promoted axonal remyelination in organotypic cerebellar cultures. THC remyelinating action relied on the induction of oligodendrocyte precursor differentiation upon cell cycle exit and via CB1 cannabinoid receptor activation. CONCLUSIONS AND IMPLICATIONS: Overall, our study identifies THC administration as a promising pharmacological strategy aimed to promote functional CNS remyelination in demyelinating disorders.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Sustancia Blanca , Animales , Diferenciación Celular , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Dronabinol/farmacología , Ratones , Oligodendroglía
10.
Brain ; 132(Pt 11): 3152-64, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19805493

RESUMEN

Cannabinoid-derived drugs are promising agents for the development of novel neuroprotective strategies. Activation of neuronal CB(1) cannabinoid receptors attenuates excitotoxic glutamatergic neurotransmission, triggers prosurvival signalling pathways and palliates motor symptoms in animal models of neurodegenerative disorders. However, in Huntington's disease there is a very early downregulation of CB(1) receptors in striatal neurons that, together with the undesirable psychoactive effects triggered by CB(1) receptor activation, foster the search for alternative pharmacological treatments. Here, we show that CB(2) cannabinoid receptor expression increases in striatal microglia of Huntington's disease transgenic mouse models and patients. Genetic ablation of CB(2) receptors in R6/2 mice, that express human mutant huntingtin exon 1, enhanced microglial activation, aggravated disease symptomatology and reduced mice lifespan. Likewise, induction of striatal excitotoxicity in CB(2) receptor-deficient mice by quinolinic acid administration exacerbated brain oedema, microglial activation, proinflammatory-mediator state and medium-sized spiny neuron degeneration. Moreover, administration of CB(2) receptor-selective agonists to wild-type mice subjected to excitotoxicity reduced neuroinflammation, brain oedema, striatal neuronal loss and motor symptoms. Studies on ganciclovir-induced depletion of astroglial proliferation in transgenic mice expressing thymidine kinase under the control of the glial fibrillary acidic protein promoter excluded the participation of proliferating astroglia in CB(2) receptor-mediated actions. These findings support a pivotal role for CB(2) receptors in attenuating microglial activation and preventing neurodegeneration that may pave the way to new therapeutic strategies for neuroprotection in Huntington's disease as well as in other neurodegenerative disorders with a significant excitotoxic component.


Asunto(s)
Enfermedad de Huntington , Microglía/metabolismo , Fármacos Neuroprotectores/metabolismo , Receptor Cannabinoide CB2/metabolismo , Animales , Antibacterianos/farmacología , Biomarcadores/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Minociclina/farmacología , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácido Quinolínico/farmacología , Receptor Cannabinoide CB2/genética , Prueba de Desempeño de Rotación con Aceleración Constante , Convulsiones/fisiopatología
11.
Cells ; 9(9)2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32947957

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin disease caused by mutation of the COL7A1 gene. RDEB is associated with high levels of TGF-ß1, which is likely to be involved in the fibrosis that develops in this disease. Endoglin (CD105) is a type III coreceptor for TGF-ß1 and its overexpression in fibroblasts deregulates physiological Smad/Alk1/Alk5 signalling, repressing the synthesis of TGF-ß1 and extracellular matrix (ECM) proteins. Raloxifene is a specific estrogen receptor modulator designated as an orphan drug for hereditary hemorrhagic telangiectasia, a rare vascular disease. Raloxifene stimulates endoglin synthesis, which could attenuate fibrosis. By contrast, the antioxidant N-acetylcysteine may have therapeutic value to rectify inflammation, fibrosis and endothelial dysfunction. Thus, we present here a repurposing strategy based on the molecular and functional screening of fibroblasts from RDEB patients with these drugs, leading us to propose the repositioning of these two well-known drugs currently in clinical use, raloxifene and N-acetylcysteine, to counteract fibrosis and inflammation in RDEB. Both compounds modulate the profibrotic events that may ultimately be responsible for the clinical manifestations in RDEB, suggesting that these findings may also be relevant for other diseases in which fibrosis is an important pathophysiological event.


Asunto(s)
Acetilcisteína/farmacología , Reposicionamiento de Medicamentos , Epidermólisis Ampollosa/genética , Fibroblastos/efectos de los fármacos , Clorhidrato de Raloxifeno/farmacología , Factor de Crecimiento Transformador beta1/genética , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Antioxidantes/farmacología , Estudios de Casos y Controles , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Endoglina/genética , Endoglina/metabolismo , Epidermólisis Ampollosa/metabolismo , Epidermólisis Ampollosa/patología , Antagonistas de Estrógenos/farmacología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Regulación de la Expresión Génica , Humanos , Patrón de Herencia , Cultivo Primario de Células , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Índice de Severidad de la Enfermedad , Transducción de Señal , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
12.
J Clin Med ; 9(9)2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854260

RESUMEN

Von Hippel-Lindau (VHL), is a rare autosomal dominant inherited cancer in which the lack of VHL protein triggers the development of multisystemic tumors such us retinal hemangioblastomas (HB), CNS-HB, and clear cell renal cell carcinoma (ccRCC). ccRCC ranks third in terms of incidence and first in cause of death. Standard systemic therapies for VHL-ccRCC have shown limited response, with recurrent surgeries being the only effective treatment. Targeting of ß2-adrenergic receptor (ADRB) has shown therapeutic antitumor benefits on VHL-retinal HB (clinical trial) and VHL-CNS HB (in vitro). Therefore, the in vitro and in vivo antitumor benefits of propranolol (ADRB-1,2 antagonist) and ICI-118,551 (ADRB-2 antagonist) on VHL-/- ccRCC primary cultures and 786-O tumor cell lines have been addressed. Propranolol and ICI-118,551 activated apoptosis inhibited gene and protein expression of HIF-2α, CAIX, and VEGF, and impaired partially the nuclear internalization of HIF-2α and NFĸB/p65. Moreover, propranolol and ICI-118,551 reduced tumor growth on two in vivo xenografts. Finally, ccRCC patients receiving propranolol as off-label treatment have shown a positive therapeutic response for two years on average. In summary, propranolol and ICI-118,551 have shown antitumor benefits in VHL-derived ccRCC, and since ccRCCs comprise 63% of the total RCCs, targeting ADRB2 becomes a promising drug for VHL and other non-VHL tumors.

13.
Eur Arch Psychiatry Clin Neurosci ; 259(7): 371-82, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19588184

RESUMEN

During brain development, functional neurogenesis is achieved by the concerted action of various steps that include the expansion of progenitor cells, neuronal specification, and establishment of appropriate synapses. Brain patterning and regionalization is regulated by a variety of extracellular signals and morphogens that, together with neuronal activity, orchestrate and regulate progenitor proliferation, differentiation, and neuronal maturation. In the adult brain, CB(1) cannabinoid receptors are expressed at very high levels in selective areas and are engaged by endocannabinoids, which act as retrograde messengers controlling neuronal function and preventing excessive synaptic activity. In addition, the endocannabinoid system is present at early developmental stages of nervous system formation. Recent studies have provided novel information on the role of this endogenous neuromodulatory system in the control of neuronal specification and maturation. Thus, cannabinoid receptors and locally produced endocannabinoids regulate neural progenitor proliferation and pyramidal specification of projecting neurons. CB(1) receptors also control axonal navigation, migration, and positioning of interneurons and excitatory neurons. Loss of function studies by genetic ablation or pharmacological blockade of CB(1) receptors interferes with long-range subcortical projections and, likewise, prenatal cannabinoid exposure induces different functional alterations in the adult brain. Potential implications of these new findings, such as the participation of the endocannabinoid system in the pathogenesis of neurodevelopmental disorders (e.g., schizophrenia) and the regulation of neurogenesis in brain depression, are discussed herein.


Asunto(s)
Encéfalo , Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Neurogénesis/fisiología , Trastornos Psicóticos , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiopatología , Proliferación Celular , Cognición/fisiología , Humanos , Trastornos Psicóticos/metabolismo , Trastornos Psicóticos/fisiopatología , Receptores de Cannabinoides/fisiología , Transducción de Señal/fisiología , Células Madre/fisiología
14.
Cancers (Basel) ; 11(7)2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295963

RESUMEN

Controlled delivery of multiple chemotherapeutics can improve the effectiveness of treatments and reduce side effects and relapses. Here in, we used albumin-stabilized gold nanoclusters modified with doxorubicin and SN38 (AuNCs-DS) as combined therapy for cancer. The chemotherapeutics are conjugated to the nanostructures using linkers that release them when exposed to different internal stimuli (Glutathione and pH). This system has shown potent antitumor activity against breast and pancreatic cancer cells. Our studies indicate that the antineoplastic activity observed may be related to the reinforced DNA damage generated by the combination of the drugs. Moreover, this system presented antineoplastic activity against mammospheres, a culturing model for cancer stem cells, leading to an efficient reduction of the number of oncospheres and their size. In summary, the nanostructures reported here are promising carriers for combination therapy against cancer and particularly to cancer stem cells.

15.
Sci Rep ; 9(1): 11916, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31417117

RESUMEN

Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer. Here, we propose to use the information accumulating regarding the biology of miRs from clinical research in the preclinical arena, adapting it to the use of miR biosensors in the earliest steps of drug screening. Thus, we have used an amperometric dual magnetosensor capable of monitoring a miR-21/miR-205 signature to screen for new drugs that restore these miRs to non-tumorigenic levels in cell models of breast cancer and glioblastoma. In this way we have been able to identify a new chemical entity, 11PS04 ((3aR,7aS)-2-(3-propoxyphenyl)-7,7a-dihydro-3aH-pyrano[3,4-d]oxazol-6(4H)-one), the therapeutic potential of which was suggested in mechanistic assays of disease models, including 3D cell culture (oncospheres) and xenografts. These assays highlighted the potential of this compound to attack cancer stem cells, reducing the growth of breast and glioblastoma tumors in vivo. These data demonstrate the enhanced chain of translatability of this strategy, opening up new perspectives for drug-discovery pipelines and highlighting the potential of miR-based electro-analytical sensors as efficient tools in modern drug discovery.


Asunto(s)
Técnicas Biosensibles , MicroARNs/metabolismo , Células Madre Neoplásicas/patología , Oxazoles/farmacología , Animales , Antineoplásicos/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/patología , Fenómenos Magnéticos , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/patología , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Oxazoles/química , Reproducibilidad de los Resultados , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
J Neurosci ; 26(5): 1551-61, 2006 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-16452678

RESUMEN

Endocannabinoids exert an important neuromodulatory role via presynaptic cannabinoid CB1 receptors and may also participate in the control of neural cell death and survival. The function of the endocannabinoid system has been extensively studied in differentiated neurons, but its potential role in neural progenitor cells remains to be elucidated. Here we show that the CB1 receptor and the endocannabinoid-inactivating enzyme fatty acid amide hydrolase are expressed, both in vitro and in vivo, in postnatal radial glia (RC2+ cells) and in adult nestin type I (nestin(+)GFAP+) neural progenitor cells. Cell culture experiments show that CB1 receptor activation increases progenitor proliferation and differentiation into astroglial cells in vitro. In vivo analysis evidences that, in postnatal CB1(-/-) mouse brain, progenitor proliferation and astrogliogenesis are impaired. Likewise, in adult CB1-deficient mice, neural progenitor proliferation is decreased but is increased in fatty acid amide hydrolase-deficient mice. In addition, endocannabinoid signaling controls neural progenitor differentiation in the adult brain by promoting astroglial differentiation of newly born cells. These results show a novel physiological role of endocannabinoids, which constitute a new family of signaling cues involved in the regulation of neural progenitor cell function.


Asunto(s)
Amidohidrolasas/metabolismo , Astrocitos/citología , Moduladores de Receptores de Cannabinoides/fisiología , Endocannabinoides , Neuronas/citología , Receptor Cannabinoide CB1/metabolismo , Células Madre/fisiología , Amidohidrolasas/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Benzamidas/farmacología , Benzoxazinas , Cannabinoides/farmacología , Carbamatos/farmacología , Diferenciación Celular , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Ratones , Ratones Noqueados , Morfolinas/farmacología , Naftalenos/farmacología , Proteínas del Tejido Nervioso/metabolismo , Nestina , Ratas , Receptor Cannabinoide CB1/genética , Células Madre/citología , Células Madre/metabolismo
17.
Neuroscientist ; 13(2): 109-14, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17404371

RESUMEN

The endocannabinoid system exerts an important neuromodulatory function in different brain areas and is also known to be involved in the regulation of neural cell fate. Thus, CB(1) cannabinoid receptors are neuroprotective in different models of brain injury, and their expression is altered in various neurodegenerative diseases. Recent findings have demonstrated the presence of a functional endocannabinoid system in neural progenitor cells that participates in the regulation of cell proliferation and differentiation. In this Research Update, the authors address the experimental evidence regarding the regulatory role of cannabinoids in neurogenesis and analyze them in the context of those pathological disorders in which cannabinoid function and altered neuronal or glial generation is most relevant, for example, stroke and multiple sclerosis.


Asunto(s)
Encefalopatías/metabolismo , Encéfalo/metabolismo , Moduladores de Receptores de Cannabinoides/metabolismo , Proliferación Celular/efectos de los fármacos , Endocannabinoides , Regeneración Nerviosa/fisiología , Receptor Cannabinoide CB1/metabolismo , Animales , Encéfalo/fisiopatología , Encefalopatías/tratamiento farmacológico , Encefalopatías/fisiopatología , Moduladores de Receptores de Cannabinoides/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Humanos , Regeneración Nerviosa/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Fármacos Neuroprotectores/farmacología , Receptor Cannabinoide CB1/genética , Células Madre/efectos de los fármacos , Células Madre/metabolismo
18.
Mol Neurobiol ; 36(1): 60-7, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17952650

RESUMEN

Cannabinoids, the active components of Cannabis sativa L., act in the body by mimicking endogenous substances--the endocannabinoids--that activate specific cell surface receptors. Cannabinoids exert various palliative effects in cancer patients. In addition, cannabinoids inhibit the growth of different types of tumor cells, including glioma cells, in laboratory animals. They do so by modulating key cell signaling pathways, mostly the endoplasmic reticulum stress response, thereby inducing antitumoral actions such as the apoptotic death of tumor cells and the inhibition of tumor angiogenesis. Of interest, cannabinoids seem to be selective antitumoral compounds, as they kill glioma cells, but not their non-transformed astroglial counterparts. On the basis of these preclinical findings, a pilot clinical study of Delta(9)-tetrahydrocannabinol (THC) in patients with recurrent glioblastoma multiforme has been recently run. The good safety profile of THC, together with its possible growth-inhibiting action on tumor cells, justifies the setting up of future trials aimed at evaluating the potential antitumoral activity of cannabinoids.


Asunto(s)
Antineoplásicos/uso terapéutico , Cannabinoides/uso terapéutico , Glioma/tratamiento farmacológico , Animales , Humanos , Receptores de Cannabinoides/metabolismo
19.
FASEB J ; 20(13): 2405-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17015409

RESUMEN

Cannabinoids, the active components of marijuana and their endogenous counterparts, act on the brain and many other organs through the widely expressed CB1 cannabinoid receptor. In contrast, the CB2 cannabinoid receptor is abundant in the immune system and shows a restricted expression pattern in brain cells. CB2-selective agonists are, therefore, very attractive therapeutic agents as they do not cause CB1-mediated psychoactive effects. CB2 receptor expression in brain has been partially examined in differentiated cells, while its presence and function in neural progenitor cells remain unknown. Here we show that the CB2 receptor is expressed, both in vitro and in vivo, in neural progenitors from late embryonic stages to adult brain. Selective pharmacological activation of the CB2 receptor in vitro promotes neural progenitor cell proliferation and neurosphere generation, an action that is impaired in CB2-deficient cells. Accordingly, in vivo experiments evidence that hippocampal progenitor proliferation is increased by administration of the CB2-selective agonist HU-308. Moreover, impaired progenitor proliferation was observed in CB2-deficient mice both in normal conditions and on kainate-induced excitotoxicity. These findings provide a novel physiological role for the CB2 cannabinoid receptor and open a novel therapeutic avenue for manipulating neural progenitor cell fate.


Asunto(s)
Cannabinoides/farmacología , Diferenciación Celular/fisiología , Neuronas/fisiología , Receptor Cannabinoide CB2/agonistas , Receptor Cannabinoide CB2/fisiología , Células Madre/fisiología , Animales , Diferenciación Celular/efectos de los fármacos , Cartilla de ADN , Embrión de Mamíferos , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Humanos , Ácido Kaínico/farmacología , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Receptor Cannabinoide CB2/deficiencia , Receptor Cannabinoide CB2/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/efectos de los fármacos
20.
Curr Pharm Des ; 12(18): 2319-25, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16787257

RESUMEN

The endocannabinoids (eCBs) anandamide and 2-arachidonoylglycerol are important retrograde messengers that inhibit neurotransmitter release via presynaptic CB1 receptors. In addition, cannabinoids are known to modulate the cell death/survival decision of different neural cell types, leading to different outcomes that depend on the nature of the target cell and its proliferative/differentiation status. Thus, cannabinoids protect primary neurons, astrocytes and oligodendrocytes from apoptosis, whereas transformed glial cells are prone to apoptosis by cannabinoid challenge. Moreover, a potential role of the eCB system in neurogenesis and neural differentiation has been proposed. Recent research shows that eCBs stimulate neural progenitor proliferation and inhibit hippocampal neurogenesis in normal adult brain. Cannabinoids inhibit cortical neuron differentiation and promote glial differentiation. On the other hand, experiments with differentiated neurons have shown that cannabinoids also regulate neuritogenesis, axonal growth and synaptogenesis. These new observations support that eCBs constitute a new family of lipid signaling cues responsible for the regulation of neural progenitor proliferation and differentiation, acting as instructive proliferative signals through the CB1 receptor.


Asunto(s)
Encéfalo/citología , Moduladores de Receptores de Cannabinoides/metabolismo , Diferenciación Celular , Proliferación Celular , Endocannabinoides , Neuroglía/citología , Neuronas/citología , Células Madre/citología , Animales , Benzoxazinas , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Linaje de la Célula , Humanos , Morfolinas/farmacología , Naftalenos/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA