Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 602(7896): 287-293, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34937053

RESUMEN

Morphogen gradients are fundamental to establish morphological patterns in developing tissues1. During development, gradients scale to remain proportional to the size of growing organs2,3. Scaling is a universal gear that adjusts patterns to size in living organisms3-8, but its mechanisms remain unclear. Here, focusing on the Decapentaplegic (Dpp) gradient in the Drosophila wing disc, we uncover a cell biological basis behind scaling. From small to large discs, scaling of the Dpp gradient is achieved by increasing the contribution of the internalized Dpp molecules to Dpp transport: to expand the gradient, endocytosed molecules are re-exocytosed to spread extracellularly. To regulate the contribution of endocytosed Dpp to the spreading extracellular pool during tissue growth, it is the Dpp binding rates that are progressively modulated by the extracellular factor Pentagone, which drives scaling. Thus, for some morphogens, evolution may act on endocytic trafficking to regulate the range of the gradient and its scaling, which could allow the adaptation of shape and pattern to different sizes of organs in different species.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Endocitosis , Morfogénesis , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
2.
PLoS Comput Biol ; 18(2): e1009907, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35213533

RESUMEN

The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems.


Asunto(s)
Algoritmos , Redes Reguladoras de Genes , Animales , Simulación por Computador , Redes Reguladoras de Genes/genética , Ratones , RNA-Seq , Análisis de la Célula Individual/métodos , Secuenciación del Exoma
3.
PLoS Biol ; 17(10): e3000081, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31634368

RESUMEN

In vitro models of postimplantation human development are valuable to the fields of regenerative medicine and developmental biology. Here, we report characterization of a robust in vitro platform that enabled high-content screening of multiple human pluripotent stem cell (hPSC) lines for their ability to undergo peri-gastrulation-like fate patterning upon bone morphogenetic protein 4 (BMP4) treatment of geometrically confined colonies and observed significant heterogeneity in their differentiation propensities along a gastrulation associable and neuralization associable axis. This cell line-associated heterogeneity was found to be attributable to endogenous Nodal expression, with up-regulation of Nodal correlated with expression of a gastrulation-associated gene profile, and Nodal down-regulation correlated with a preneurulation-associated gene profile expression. We harness this knowledge to establish a platform of preneurulation-like fate patterning in geometrically confined hPSC colonies in which fates arise because of a BMPs signalling gradient conveying positional information. Our work identifies a Nodal signalling-dependent switch in peri-gastrulation versus preneurulation-associated fate patterning in hPSC cells, provides a technology to robustly assay hPSC differentiation outcomes, and suggests conserved mechanisms of organized fate specification in differentiating epiblast and ectodermal tissues.


Asunto(s)
Proteína Morfogenética Ósea 4/farmacología , Linaje de la Célula/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica , Proteína Nodal/genética , Células Madre Pluripotentes/efectos de los fármacos , Fenómenos Biomecánicos , Tipificación del Cuerpo/genética , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Línea Celular , Linaje de la Célula/genética , Gastrulación/efectos de los fármacos , Gastrulación/genética , Perfilación de la Expresión Génica , Heterogeneidad Genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Biológicos , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Proteína Nodal/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Propiedades de Superficie
4.
Development ; 144(5): 837-843, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28246213

RESUMEN

A fundamental question in developmental biology is how organ size is controlled. We have previously shown that the area growth rate in the Drosophila eye primordium declines inversely proportionally to the increase in its area. How the observed reduction in the growth rate is achieved is unknown. Here, we explore the dilution of the cytokine Unpaired (Upd) as a possible candidate mechanism. In the developing eye, upd expression is transient, ceasing at the time when the morphogenetic furrow first emerges. We confirm experimentally that the diffusion and stability of the JAK/STAT ligand Upd are sufficient to control eye disc growth via a dilution mechanism. We further show that sequestration of Upd by ectopic expression of an inactive form of the receptor Domeless (Dome) results in a substantially lower growth rate, but the area growth rate still declines inversely proportionally to the area increase. This growth rate-to-area relationship is no longer observed when Upd dilution is prevented by the continuous, ectopic expression of Upd. We conclude that a mechanism based on the dilution of the growth modulator Upd can explain how growth termination is controlled in the eye disc.


Asunto(s)
Citocinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ojo/crecimiento & desarrollo , Células Fotorreceptoras de Invertebrados/fisiología , Factores de Transcripción/metabolismo , Animales , Simulación por Computador , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Cinética , Mutación , Factores de Transcripción STAT/metabolismo , Transducción de Señal
5.
Phys Rev Lett ; 120(19): 198102, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29799239

RESUMEN

We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.


Asunto(s)
Tipificación del Cuerpo/fisiología , Modelos Biológicos , Morfogénesis/fisiología , Animales , Drosophila melanogaster/crecimiento & desarrollo , Modelos Animales , Transducción de Señal
6.
Dev Biol ; 418(1): 98-107, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27502436

RESUMEN

During organ development, the progenitor state is transient, and depends on specific combinations of transcription factors and extracellular signals. Not surprisingly, abnormal maintenance of progenitor transcription factors may lead to tissue overgrowth, and the concurrence of signals from the local environment is often critical to trigger this overgrowth. Therefore, identifying specific combinations of transcription factors/signals promoting -or opposing- proliferation in progenitors is essential to understand normal development and disease. We have investigated this issue using the Drosophila eye as model. Transcription factors hth and tsh are transiently expressed in eye progenitors causing the expansion of the progenitor pool. However, if their co-expression is maintained experimentally, cell proliferation continues and differentiation is halted. Here we show that Hth+Tsh-induced tissue overgrowth requires the BMP2 Dpp and the abnormal hyperactivation of its pathway. Rather than using autocrine Dpp expression, Hth+Tsh cells increase their avidity for Dpp, produced locally, by upregulating extracellular matrix components. During normal development, Dpp represses hth and tsh ensuring that the progenitor state is transient. However, cells in which Hth+Tsh expression is forcibly maintained use Dpp to enhance their proliferation.


Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/biosíntesis , Proteínas Represoras/biosíntesis , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Ojo Compuesto de los Artrópodos/citología , Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Transducción de Señal
7.
PLoS Comput Biol ; 12(9): e1005052, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27626238

RESUMEN

Patterning and growth are linked during early development and have to be tightly controlled to result in a functional tissue or organ. During the development of the Drosophila eye, this linkage is particularly clear: the growth of the eye primordium mainly results from proliferating cells ahead of the morphogenetic furrow (MF), a moving signaling wave that sweeps across the tissue from the posterior to the anterior side, that induces proliferating cells anterior to it to differentiate and become cell cycle quiescent in its wake. Therefore, final eye disc size depends on the proliferation rate of undifferentiated cells and on the speed with which the MF sweeps across the eye disc. We developed a spatio-temporal model of the growing eye disc based on the regulatory interactions controlled by the signals Decapentaplegic (Dpp), Hedgehog (Hh) and the transcription factor Homothorax (Hth) and explored how the signaling patterns affect the movement of the MF and impact on eye disc growth. We used published and new quantitative data to parameterize the model. In particular, two crucial parameter values, the degradation rate of Hth and the diffusion coefficient of Hh, were measured. The model is able to reproduce the linear movement of the MF and the termination of growth of the primordium. We further show that the model can explain several mutant phenotypes, but fails to reproduce the previously observed scaling of the Dpp gradient in the anterior compartment.


Asunto(s)
Drosophila/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Morfogénesis/fisiología , Transducción de Señal/fisiología , Animales , Proliferación Celular , Biología Computacional , Simulación por Computador , Proteínas de Drosophila/metabolismo , Análisis Espacio-Temporal
8.
Dev Genes Evol ; 226(3): 221-33, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27038024

RESUMEN

The morphology and function of organs depend on coordinated changes in gene expression during development. These changes are controlled by transcription factors, signaling pathways, and their regulatory interactions, which are represented by gene regulatory networks (GRNs). Therefore, the structure of an organ GRN restricts the morphological and functional variations that the organ can experience-its potential morphospace. Therefore, two important questions arise when studying any GRN: what is the predicted available morphospace and what are the regulatory linkages that contribute the most to control morphological variation within this space. Here, we explore these questions by analyzing a small "three-node" GRN model that captures the Hh-driven regulatory interactions controlling a simple visual structure: the ocellar region of Drosophila. Analysis of the model predicts that random variation of model parameters results in a specific non-random distribution of morphological variants. Study of a limited sample of drosophilids and other dipterans finds a correspondence between the predicted phenotypic range and that found in nature. As an alternative to simulations, we apply Bayesian networks methods in order to identify the set of parameters with the largest contribution to morphological variation. Our results predict the potential morphological space of the ocellar complex and identify likely candidate processes to be responsible for ocellar morphological evolution using Bayesian networks. We further discuss the assumptions that the approach we have taken entails and their validity.


Asunto(s)
Drosophila/anatomía & histología , Drosophila/genética , Evolución Molecular , Redes Reguladoras de Genes , Animales , Teorema de Bayes , Drosophila/clasificación , Proteínas de Drosophila/genética , Variación Genética , Proteínas Hedgehog/genética , Aprendizaje Automático
9.
Development ; 140(1): 82-92, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23154412

RESUMEN

During development, extracellular signaling molecules interact with intracellular gene networks to control the specification, pattern and size of organs. One such signaling molecule is Hedgehog (Hh). Hh is known to act as a morphogen, instructing different fates depending on the distance to its source. However, how Hh, when signaling across a cell field, impacts organ-specific transcriptional networks is still poorly understood. Here, we investigate this issue during the development of the Drosophila ocellar complex. The development of this sensory structure, which is composed of three simple eyes (or ocelli) located at the vertices of a triangular patch of cuticle on the dorsal head, depends on Hh signaling and on the definition of three domains: two areas of eya and so expression--the prospective anterior and posterior ocelli--and the intervening interocellar domain. Our results highlight the role of the homeodomain transcription factor engrailed (en) both as a target and as a transcriptional repressor of hh signaling in the prospective interocellar region. Furthermore, we identify a requirement for the Notch pathway in the establishment of en maintenance in a Hh-independent manner. Therefore, hh signals transiently during the specification of the interocellar domain, with en being required here for hh signaling attenuation. Computational analysis further suggests that this network design confers robustness to signaling noise and constrains phenotypic variation. In summary, using genetics and modeling we have expanded the ocellar gene network to explain how the interaction between the Hh gradient and this gene network results in the generation of stable mutually exclusive gene expression domains. In addition, we discuss some general implications our model may have in some Hh-driven gene networks.


Asunto(s)
Tipificación del Cuerpo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ojo/embriología , Redes Reguladoras de Genes/fisiología , Proteínas Hedgehog/genética , Animales , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Marcación de Gen/métodos , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Modelos Genéticos , Proteínas Represoras/metabolismo , Proteínas Represoras/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
10.
Stem Cell Reports ; 18(1): 377-393, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36332630

RESUMEN

The mechanism by which morphogenetic signals engage the regulatory networks responsible for early embryonic tissue patterning is incompletely understood. Here, we developed a minimal gene regulatory network (GRN) model of human pluripotent stem cell (hPSC) lineage commitment and embedded it into "cellular" agents that respond to a dynamic morphogenetic signaling microenvironment. Simulations demonstrated that GRN wiring had significant non-intuitive effects on tissue pattern order, composition, and dynamics. Experimental perturbation of GRN connectivities supported model predictions and demonstrated the role of OCT4 as a master regulator of peri-gastrulation fates. Our so-called GARMEN strategy provides a multiscale computational platform to understand how single-cell-based regulatory interactions scale to tissue domains. This foundation provides new opportunities to simulate the impact of network motifs on normal and aberrant tissue development.


Asunto(s)
Células Madre Pluripotentes , Humanos , Gastrulación/genética , Transducción de Señal , Redes Reguladoras de Genes , Mesodermo , Diferenciación Celular , Endodermo , Regulación del Desarrollo de la Expresión Génica
11.
Nat Commun ; 12(1): 5660, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580289

RESUMEN

Small Open Reading Frames (smORFs) coding for peptides of less than 100 amino-acids are an enigmatic and pervasive gene class, found in the tens of thousands in metazoan genomes. Here we reveal a short 80 amino-acid peptide (Pegasus) which enhances Wingless/Wnt1 protein short-range diffusion and signalling. During Drosophila wing development, Wingless has sequential functions, including late induction of proneural gene expression and wing margin development. Pegasus mutants produce wing margin defects and proneural expression loss similar to those of Wingless. Pegasus is secreted, and co-localizes and co-immunoprecipitates with Wingless, suggesting their physical interaction. Finally, measurements of fixed and in-vivo Wingless gradients support that Pegasus increases Wingless diffusion in order to enhance its signalling. Our results unveil a new element in Wingless signalling and clarify the patterning role of Wingless diffusion, while corroborating the link between small open reading frame peptides, and regulation of known proteins with membrane-related functions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos/metabolismo , Alas de Animales/crecimiento & desarrollo , Proteína Wnt1/metabolismo , Animales , Animales Modificados Genéticamente , Microscopía Intravital , Péptidos/genética , Imagen de Lapso de Tiempo
12.
Wiley Interdiscip Rev Dev Biol ; 4(6): 591-608, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26108346

RESUMEN

How a developing organ grows and patterns to its final shape is an important question in developmental biology. Studies of growth and patterning in the Drosophila wing imaginal disc have identified a key player, the morphogen Decapentaplegic (Dpp). These studies provided insights into our understanding of growth control and scaling: expansion of the Dpp gradient correlated with the growth of the tissue. A recent report on growth of a Drosophila organ other than the wing, the eye imaginal disc, prompts a reconsideration of our models of growth control. Despite striking differences between the two, the Dpp gradient scales with the target tissues of both organs and the growth of both the wing and the eye is controlled by Dpp. The goal of this review is to discuss whether a parsimonious model of scaling and growth control can explain the relationship between the Dpp gradient and growth in these two different developmental systems.


Asunto(s)
Drosophila/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Alas de Animales/crecimiento & desarrollo , Animales , Tipificación del Cuerpo/fisiología , Proteínas de Drosophila , Discos Imaginales , Morfogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA