Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Treat Options Oncol ; 14(4): 623-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24243164

RESUMEN

OPINION STATEMENT: Patients with cancer of unknown primary are common and can present in a variety of ways with different histological features. Despite best clinical effort in pretreatment diagnostic workup, many patients classified as having cancer of unknown primary (CUP) often are still left with no definitive diagnosis of the primary organ or tissue of origin to account for the metastatic disease. Whereas advances in immunohistochemical techniques have improved the diagnostic yield to some extent, the challenges remain substantial for most patients with CUP in whom initial therapy is typically chosen empirically. In recent years, development of molecular gene profiling of tumor offers new possibilities to better characterize, diagnose, and classify the tissue of origin of various metastatic CUP to better inform optimal therapy. The premise behind the development of improved diagnostic tools to better diagnose the organ or tissue of origin for metastatic disease of unknown primary is that an organ/tissue-specific tailored therapy of choice would favorably impact the treatment outcome. There are now three commercially available molecular profiling platforms for the purpose of diagnosing the tissue of origin in the otherwise CUP patients: 1) bioTheranostics: Cancer TYPE ID® (qRT-PCR for mRNA); 2) Pathworks®: Tissue of origin test (microarray for mRNA expression); and 3) Rosetta Genomics-Prometheus: miRview™ mets (ProOnc Tumor SourceDxT) (qRT-PCR for microRNA). Whereas these are new technologic platforms that offer new promise for better diagnostics and perhaps better therapeutic strategies in cancer therapy, each of the platforms has its own strengths and limitations due to their test of choice and assay source materials and technical platform itself. However, a fundamental question that needs be further addressed regarding the utility of these novel molecular profiling assays is whether they represent more superior approaches than genomic profiling assays using rapidly emerging cancer genomics next-generation sequencing (NSG) platforms. Because cancer is nowadays understood as genomic disease, the genomic alterations (e.g., mutations, copy number variations, chromosomal translocations, splicing variants) may offer more important insights into the cancer pathogenesis. More importantly, these genomic information may be more relevant in guiding personalized/precision cancer therapy than merely empiric chemotherapy based on tissue/organ-of-origin information. Ideally, further comparative studies and demonstration of utilities would be needed and eagerly anticipated to determine which diagnostic approach ultimately could impact the clinical outcome of patients with CUP.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis por Micromatrices/métodos , Neoplasias Primarias Desconocidas/patología , Diagnóstico por Imagen/métodos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunohistoquímica , Masculino , Neoplasias Primarias Desconocidas/genética , Valor Predictivo de las Pruebas , Análisis de Supervivencia
2.
Cancer Manag Res ; 6: 397-404, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25328417

RESUMEN

MET receptor tyrosine kinase and its natural ligand, hepatocyte growth factor, have been implicated in a variety of cancers, including non-small cell lung cancer (NSCLC). Mechanisms by which cellular deregulation of MET occurs include overexpression, genomic amplification, mutation, or alternative splicing. MET overexpression or activation is a known cause of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in NSCLC. Inhibition of MET signaling in these EGFR tyrosine kinase inhibitor-resistant cells may potentially restore sensitivity to EGFR inhibitors. Tivantinib (ARQ 197), reported as a small-molecule MET inhibitor, has demonstrated antitumor activity in early clinical studies. This review focuses on MET and lung cancer, the clinical development of tivantinib, the clinical trials of tivantinib in NSCLC to date, its current/emerging role in the management of NSCLC, and future directions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA