Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mech Ageing Dev ; 221: 111961, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960099

RESUMEN

This comprehensive review elucidates the critical role of antioxidants to mitigate oxidative stress, a common denominator in an array of neurodegenerative disorders. Oxidative stress-induced damage has been linked to the development of diseases such as Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. This article examines a wide range of scientific literature and methodically delineates the several methods by which antioxidants exercise their neuroprotective benefits. It also explores into the complex relationship between oxidative stress and neuroinflammation, focusing on how antioxidants can alter signaling pathways and transcription factors to slow neurodegenerative processes. Key antioxidants, such as vitamins C and E, glutathione, and polyphenolic compounds, are tested for their ability to combat reactive oxygen and nitrogen species. The dual character of antioxidants, which operate as both direct free radical scavengers and regulators of cellular redox homeostasis, is investigated in terms of therapeutic potential. Furthermore, the study focuses on new antioxidant-based therapy techniques and their mechanisms including Nrf-2, PCG1α, Thioredoxin etc., which range from dietary interventions to targeted antioxidant molecules. Insights into ongoing clinical studies evaluating antioxidant therapies in neurodegenerative illnesses offer an insight into the translational potential of antioxidant research. Finally, this review summarizes our present understanding of antioxidant processes in neurodegenerative illnesses, providing important possibilities for future study and treatment development.

2.
Med Oncol ; 40(6): 173, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37165283

RESUMEN

Dasatinib is the 2nd generation TKI (Tyrosine Kinase Inhibitor) having the potential to treat numerous forms of leukemic and cancer patients and it is 300 times more potent than imatinib. Cancer is the major cause of death globally and need to enumerate novel strategies to coping with it. Various novel therapeutics introduced into the market for ease in treating various forms of cancer. We reviewed and evaluated all the related aspects of dasatinib, which can enhance the knowledge about dasatinib therapeutics methodology, pharmacodynamic and pharmacokinetics, side effects, advantages, disadvantages, various kinds of interactions and its novel formulations as well.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Dasatinib/farmacología , Dasatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/efectos adversos , Mesilato de Imatinib/uso terapéutico
3.
J Biomater Sci Polym Ed ; 33(17): 2292-2323, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35796720

RESUMEN

The CAD (Computer-aided design) and CAM (computer-aided manufacturing) have most applications in the manufacturing of fully automated, personalized dental devices and tailor-made treatment plans. 3D printing is one of the most rapidly expanding and new methods of manufacturing different things because of its on-demand and high productivity within the cost-effective manner which have a variety of applications in healthcare, pharmaceuticals, orthopaedics, engineered tissue models, medical devices, defence industries, automotive and aerospace sectors. Due to its emerging applications in the various sectors, the healthcare, Industries, and academic sectors are attracted towards the 3D printed materials. This review talks about the dental implants, polymers that are employed in concocting dental implants, critical parameters, and challenges which are to be considered while preparing these implants, advantages of 3D printing in the field of dentistry and the current trends. it discusses the variety of applications of 3D printed materials in the field of dentistry. Along with their method of fabrication, their critical process parameters (CPPs) are also discussed.


Asunto(s)
Implantes Dentales , Humanos , Impresión Tridimensional , Diseño Asistido por Computadora , Ingeniería de Tejidos , Atención Odontológica
4.
RSC Adv ; 12(37): 23808-23828, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36093244

RESUMEN

Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made in techniques for creating electro-spun and non-electro-spun nanofibers. Nanofibers were the center of attention for industries and researchers due to their simplicity in manufacture and setup. The review discusses a thorough overview of both electrospinning and non-electrospinning processes, including their setup, fabrication process, components, and applications. The review starts with an overview of the field of nanotechnology, the background of electrospinning, the surge in demand for nanofiber production, the materials needed to make nanofibers, and the critical process variables that determine the characteristics of nanofibers. Additionally, the diverse applications of electrospun nanofibers, such as smart mats, catalytic supports, filtration membranes, energy storage/heritage components, electrical devices (batteries), and biomedical scaffolds, are then covered. Further, the review concentrates on the most recent and pertinent developments in nanofibers that are connected to the use of nanofibers, focusing on the most illustrative cases. Finally, challenges and their possible solutions, marketing, and the future prospects of nanofiber development are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA