Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 377(1864): 20210325, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36189811

RESUMEN

During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.


Asunto(s)
Miocitos Cardíacos , Sarcómeros , Mitocondrias , Miocitos Cardíacos/metabolismo
2.
J Vis Exp ; (169)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33749676

RESUMEN

Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) can be produced from both embryonic and induced pluripotent stem (ES/iPS) cells. These cells provide promising sources for cardiac disease modeling. For cardiomyopathies, sarcomere shortening is one of the standard physiological assessments that are used with adult cardiomyocytes to examine their disease phenotypes. However, the available methods are not appropriate to assess the contractility of PSC-CMs, as these cells have underdeveloped sarcomeres that are invisible under phase-contrast microscopy. To address this issue and to perform sarcomere shortening with PSC-CMs, fluorescent-tagged sarcomere proteins and fluorescent live-imaging were used. Thin Z-lines and an M-line reside at both ends and the center of a sarcomere, respectively. Z-line proteins - α-Actinin (ACTN2), Telethonin (TCAP), and actin-associated LIM protein (PDLIM3) - and one M-line protein - Myomesin-2 (Myom2) - were tagged with fluorescent proteins. These tagged proteins can be expressed from endogenous alleles as knock-ins or from adeno-associated viruses (AAVs). Here, we introduce the methods to differentiate mouse and human pluripotent stem cells to cardiomyocytes, to produce AAVs, and to perform and analyze live-imaging. We also describe the methods for producing polydimethylsiloxane (PDMS) stamps for a patterned culture of PSC-CMs, which facilitates the analysis of sarcomere shortening with fluorescent-tagged proteins. To assess sarcomere shortening, time-lapse images of the beating cells were recorded at a high framerate (50-100 frames per second) under electrical stimulation (0.5-1 Hz). To analyze sarcomere length over the course of cell contraction, the recorded time-lapse images were subjected to SarcOptiM, a plug-in for ImageJ/Fiji. Our strategy provides a simple platform for investigating cardiac disease phenotypes in PSC-CMs.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Sarcómeros/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Dependovirus/metabolismo , Cuerpos Embrioides/citología , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Miocitos Cardíacos/citología , Coloración y Etiquetado , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA