Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124093, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428162

RESUMEN

Theoretical computations of pyrimidine-based azo dyes were performed by the DFT approach using the B3LYP/6 - 31G(d,p) basis set. The molecules were optimized based on the same basis set by calculating the minimum energy. FMOs, DOS and GCRD were computed for kinetic stability and chemical reactivity of the selected compounds. The MEP surface was studied to locate nucleophilic and electrophilic attack zones. The energy gap was carefully studied for pyrimidine-based azo dyes. Vibrational spectroscopy was studied in the most prominent regions with respect to PED assignments. Similarly, the UV-Vis absorption technique was calculated using the TD-DFT approach in different solvent media. The electronic structure of each atom in a molecule was examined via the electron localization function (ELF) and localized orbital locator (LOL). Non-covalent interactions were explored using reduced density gradient analysis. The combination of experimental and theoretical data allowed us to correlate the structural modifications with the observed photophysical properties, facilitating the design of azo dyes with tailored characteristics. This work contributes to the fundamental understanding of azo dyes and offers a foundation for the development of new materials with enhanced photophysical and electronic properties.

2.
RSC Adv ; 14(6): 3972-3984, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38288152

RESUMEN

Imidazopyridazines are fused heterocycles, like purines, with a pyridazine ring replacing the pyrimidine ring in purines. Imidazopyridazines have been primarily studied for their kinase inhibition activity in the development of new anticancer and antimalarial agents. In addition to this, they have also been investigated for their anticonvulsant, antiallergic, antihistamine, antiviral, and antitubercular properties. Herein, we review the background and development of different imidazopyridazines as potential pharmacological agents. Moreover, the scope of this relatively less charted heterocyclic scaffold is also highlighted.

3.
ACS Omega ; 9(22): 23802-23821, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38854577

RESUMEN

An unprecedented and efficient three-component 1,3-dipolar cycloaddition reaction using (E)-2-(benzo[d]thiazol-2-yl)-3-(aryl)acrylonitriles 4a-g and an in situ generated azomethine ylide 3 from isatin and N-methylglycine is described. The reaction exhibits exclusive regioselectivity, resulting in the formation of 3'-(benzo[d]thiazol-2-yl)-1'-methyl-2-oxo-4'-(aryl)spiro[indoline-3,2'-pyrrolidine]-3'-carbonitriles regioisomers through exo/endo approaches. The diastereoselectivity of the reaction is highly dependent on the substitution pattern of the phenyl ring in dipolarophiles 4a-g, leading to the formation of exo-/endo-cycloadducts in varying ratios. To understand the stereoselectivity, the transition state structures were optimized using the TS guess geometry with the QST3-based method. The reaction mechanism and regioselectivity were elucidated by evaluating global and local electrophilicity and nucleophilicity descriptors at the B3LYP/cc-pVTZ level of theory, along with considerations based on the HSAB principle. The analysis of global electron density transfer (GEDT) showed that the reactions are polar and electron density fluxes from azomethine ylide 3 toward dipolarophile 4a-g. It was found from the molecular electrostatic potential map (MESP) that at the more favorable transition state, approach of reactants locates the oppositely charged regions over each other resulting in attractive forces between the two fragments. The computational results are consistent with the experimental observations, confirming that the reactions proceed through an asynchronous one-step mechanism.

4.
Eur J Med Chem ; 273: 116523, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795518

RESUMEN

In the current study, a series of fluorine-substituted piperidine derivatives (1-8) has been synthesized and characterized by various spectroscopic techniques. In vitro and in vivo enzyme inhibitory studies were conducted to elucidate the efficacy of these compounds, shedding light on their potential therapeutic applications. To the best of our knowledge, for the first time, these heterocyclic structures have been investigated against α-glucosidase and cholinesterase enzymes. The antioxidant activity of the synthesized compounds was also assessed. Evaluation of synthesized compounds revealed notable inhibitory effects on α-glucosidase and cholinesterases. Remarkably, the target compounds (1-8) exhibited extraordinary α-glucosidase inhibitory activity as compared to the standard acarbose by several-fold. Subsequently, the potential antidiabetic effects of compounds 2, 4, 5, and 6 were validated using a STZ-induced diabetic rat model. Kinetic studies were also performed to understand the mechanism of inhibition, while structure-activity relationship analyses provided valuable insights into the structural features governing enzyme inhibition. Kinetic investigations revealed that compound 4 displayed a competitive mode of inhibition against α-glucosidase, whereas compound 2 demonstrated mixed-type behavior against AChE. To delve deeper into the binding interactions between the synthesized compounds and their respective enzyme targets, molecular docking studies were conducted. Overall, our findings highlight the promising potential of these densely substituted piperidines as multifunctional agents for the treatment of diseases associated with dysregulated glucose metabolism and cholinergic dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Diabetes Mellitus Experimental , Flúor , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Piperidinas , alfa-Glucosidasas , Animales , Piperidinas/química , Piperidinas/farmacología , Piperidinas/síntesis química , Piperidinas/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Relación Estructura-Actividad , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Hipoglucemiantes/uso terapéutico , Ratas , Flúor/química , alfa-Glucosidasas/metabolismo , Estructura Molecular , Masculino , Acetilcolinesterasa/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Colinesterasas/metabolismo , Estreptozocina
5.
RSC Adv ; 14(30): 21464-21537, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38979466

RESUMEN

Terpyridine-based metal complexes have emerged as versatile and indispensable building blocks in the realm of modern chemistry, offering a plethora of applications spanning from materials science to catalysis and beyond. This comprehensive review article delves into the multifaceted world of terpyridine complexes, presenting an overview of their synthesis, structural diversity, and coordination chemistry principles. Focusing on their diverse functionalities, we explore their pivotal roles in catalysis, supramolecular chemistry, luminescent materials, and nanoscience. Furthermore, we highlight the burgeoning applications of terpyridine complexes in sustainable energy technologies, biomimetic systems, and medicinal chemistry, underscoring their remarkable adaptability to address pressing challenges in these fields. By elucidating the pivotal role of terpyridine complexes as versatile building blocks, this review provides valuable insights into their current state-of-the-art applications and future potential, thus inspiring continued innovation and exploration in this exciting area of research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA