Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 18(12): e1010994, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36508467

RESUMEN

The emergence of new variants of SARS-CoV-2 necessitates unremitting efforts to discover novel therapeutic monoclonal antibodies (mAbs). Here, we report an extremely potent mAb named P4A2 that can neutralize all the circulating variants of concern (VOCs) with high efficiency, including the highly transmissible Omicron. The crystal structure of the P4A2 Fab:RBD complex revealed that the residues of the RBD that interact with P4A2 are a part of the ACE2-receptor-binding motif and are not mutated in any of the VOCs. The pan coronavirus pseudotyped neutralization assay confirmed that the P4A2 mAb is specific for SARS-CoV-2 and its VOCs. Passive administration of P4A2 to K18-hACE2 transgenic mice conferred protection, both prophylactically and therapeutically, against challenge with VOCs. Overall, our data shows that, the P4A2 mAb has immense therapeutic potential to neutralize the current circulating VOCs. Due to the overlap between the P4A2 epitope and ACE2 binding site on spike-RBD, P4A2 may also be highly effective against a number of future variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Enzima Convertidora de Angiotensina 2/química , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/terapia , Ratones Transgénicos , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética
2.
PLoS Pathog ; 17(4): e1008977, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826683

RESUMEN

Evaluating the structure-function relationship of viral envelope (Env) evolution and the development of broadly cross-neutralizing antibodies (bnAbs) in natural infection can inform rational immunogen design. In the present study, we examined the magnitude and specificity of autologous neutralizing antibodies induced in rabbits by a novel HIV-1 clade C Env protein (1PGE-THIVC) vis-à-vis those developed in an elite neutralizer from whom the env sequence was obtained that was used to prepare the soluble Env protein. The novel 1PGE-THIVC Env trimer displayed a native like pre-fusion closed conformation in solution as determined by small angle X-ray scattering (SAXS) and negative stain electron microscopy (EM). This closed spike conformation of 1PGE-THIVC Env trimers was correlated with weak or undetectable binding of non-neutralizing monoclonal antibodies (mAbs) compared to neutralizing mAbs. Furthermore, 1PGE-THIVC SOSIP induced potent neutralizing antibodies in rabbits to autologous virus variants. The autologous neutralizing antibody specificity induced in rabbits by 1PGE-THIVC was mapped to the C3/V4 region (T362/P401) of viral Env. This observation agreed with electron microscopy polyclonal epitope mapping (EMPEM) of the Env trimer complexed with IgG Fab prepared from the immunized rabbit sera. Our study demonstrated neutralization of sequence matched and unmatched autologous viruses by serum antibodies induced in rabbits by 1PGE-THIVC and also highlighted a comparable specificity for the 1PGE-THIVC SOSIP trimer with that seen with polyclonal antibodies elicited in the elite neutralizer by negative-stain electron microscopy polyclonal epitope (ns-EMPEM) mapping.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Antígenos Virales/sangre , Anticuerpos Anti-VIH/sangre , VIH-1/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Epítopos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Humanos , Inmunización/métodos , Conejos , Vacunación/métodos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
3.
Med Microbiol Immunol ; 212(1): 103-122, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36583790

RESUMEN

The SARS-CoV-2 virus has been rapidly evolving over the time and the genetic variation has led to the generation of Variants of Concerns (VoC), which have shown increased fitness. These VoC viruses contain the key mutations in the spike protein which have allowed better survival and evasion of host defense mechanisms. The D614G mutation in the spike domain is found in the majority of VoC; additionally, the P681R/H mutation at the S1/S2 furin cleavage site junction is also found to be highly conserved in major VoCs; Alpha, Delta, Omicron, and its' current variants. The impact of these genetic alterations of the SARS-CoV-2 VoCs on the host cell entry, transmissibility, and infectivity has not been clearly identified. In our study, Delta and D614G + P681R synthetic double mutant pseudoviruses showed a significant increase in the cell entry, cell-to-cell fusion and infectivity. In contrast, the Omicron and P681H synthetic single mutant pseudoviruses showed TMPRSS2 independent cell entry, less fusion and infectivity as compared to Delta and D614G + P681R double mutants. Addition of exogenous trypsin further enhanced fusion in Delta viruses as compared to Omicron. Furthermore, Delta viruses showed susceptibility to both E64d and Camostat mesylate inhibitors suggesting, that the Delta virus could exploit both endosomal and TMPRSS2 dependent entry pathways as compared to the Omicron virus. Taken together, these results indicate that the D614G and P681R/H mutations in the spike protein are pivotal which might be favoring the VoC replication in different host compartments, and thus allowing a balance of mutation vs selection for better long-term adaptation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Mutación
4.
J Biol Chem ; 295(36): 12814-12821, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32727845

RESUMEN

There is a desperate need for safe and effective vaccines, therapies, and diagnostics for SARS- coronavirus 2 (CoV-2), the development of which will be aided by the discovery of potent and selective antibodies against relevant viral epitopes. Human phage display technology has revolutionized the process of identifying and optimizing antibodies, providing facile entry points for further applications. Herein, we use this technology to search for antibodies targeting the receptor-binding domain (RBD) of CoV-2. Specifically, we screened a naïve human semisynthetic phage library against RBD, leading to the identification of a high-affinity single-chain fragment variable region (scFv). The scFv was further engineered into two other antibody formats (scFv-Fc and IgG1). All three antibody formats showed high binding specificity to CoV-2 RBD and the spike antigens in different assay systems. Flow cytometry analysis demonstrated specific binding of the IgG1 format to cells expressing membrane-bound CoV-2 spike protein. Docking studies revealed that the scFv recognizes an epitope that partially overlaps with angiotensin-converting enzyme 2 (ACE2)-interacting sites on the CoV-2 RBD. Given its high specificity and affinity, we anticipate that these anti-CoV-2 antibodies will be useful as valuable reagents for accessing the antigenicity of vaccine candidates, as well as developing antibody-based therapeutics and diagnostics for CoV-2.


Asunto(s)
Afinidad de Anticuerpos , Anticuerpos de Cadena Única/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Enzima Convertidora de Angiotensina 2 , Sitios de Unión , Epítopos/química , Epítopos/inmunología , Células HEK293 , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Anticuerpos de Cadena Única/química , Glicoproteína de la Espiga del Coronavirus/química
5.
J Biol Chem ; 295(42): 14352-14366, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32817314

RESUMEN

One strategy for the development of a next generation influenza vaccine centers upon using conserved domains of the virus to induce broader and long-lasting immune responses. The production of artificial proteins by mimicking native-like structures has shown to be a promising approach for vaccine design against diverse enveloped viruses. The amino terminus of influenza A virus matrix 2 ectodomain (M2e) is highly conserved among influenza subtypes, and previous studies have shown M2e-based vaccines are strongly immunogenic, making it an attractive target for further exploration. We hypothesized that stabilizing M2e protein in the mammalian system might influence the immunogenicity of M2e with the added advantage to robustly produce the large scale of proteins with native-like fold and hence can act as an efficient vaccine candidate. In this study, we created an engineered construct in which the amino terminus of M2e is linked to the tetramerizing domain tGCN4, expressed the construct in a mammalian system, and tested for immunogenicity in BALB/c mice. We have also constructed a stand-alone M2e construct (without tGCN4) and compared the protein expressed in mammalian cells and in Escherichia coli using in vitro and in vivo methods. The mammalian-expressed protein was found to be more stable, more antigenic than the E. coli protein, and form higher-order oligomers. In an intramuscular protein priming and boosting regimen in mice, these proteins induced high titers of antibodies and elicited a mixed Th1/Th2 response. These results highlight the mammalian-expressed M2e soluble proteins as a promising vaccine development platform.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/metabolismo , Proteínas de la Matriz Viral/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Escherichia coli/metabolismo , Células HEK293 , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Vacunas contra la Influenza/inmunología , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Células TH1/citología , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/citología , Células Th2/inmunología , Células Th2/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo
6.
Appl Microbiol Biotechnol ; 105(16-17): 6315-6332, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34423407

RESUMEN

The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.


Asunto(s)
COVID-19 , Anticuerpos Monoclonales/uso terapéutico , Humanos , Inmunización Pasiva , Inmunoterapia , SARS-CoV-2
7.
Appl Microbiol Biotechnol ; 104(8): 3209-3228, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32076776

RESUMEN

Chikungunya virus (CHIKV), a mosquito-transmitted disease that belongs to the genus Alphaviruses, has been emerged as an epidemic threat over the last two decades, and the recent co-emergence of this virus along with other circulating arboviruses and comorbidities has influenced atypical mortality rate up to 10%. Genetic variation in the virus has resulted in its adaptability towards the new vector Aedes albopictus other than Aedes aegypti, which has widen the horizon of distribution towards non-tropical and non-endemic areas. As of now, no licensed vaccines or therapies are available against CHIKV; the treatment regimens for CHIKV are mostly symptomatic, based on the clinical manifestations. Development of small molecule drugs and neutralizing antibodies are potential alternatives of worth investigating until an efficient or safe vaccine is approved. Neutralizing antibodies play an important role in antiviral immunity, and their presence is a hallmark of viral infection. In this review, we describe prospects for effective vaccines and highlight importance of neutralizing antibody-based therapeutic and prophylactic applications to combat CHIKV infections. We further discuss about the progress made towards CHIKV therapeutic interventions as well as challenges and limitation associated with the vaccine development. Furthermore this review describes the lesson learned from chikungunya natural infection, which could help in better understanding for future development of antibody-based therapeutic measures.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Antivirales/uso terapéutico , Fiebre Chikungunya/prevención & control , Fiebre Chikungunya/terapia , Inmunoterapia , Aedes/virología , Animales , Fiebre Chikungunya/inmunología , Virus Chikungunya/genética , Virus Chikungunya/patogenicidad , Ensayos Clínicos como Asunto , Variación Genética , Humanos , Mosquitos Vectores/virología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología
8.
J Biol Chem ; 292(20): 8236-8243, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28283570

RESUMEN

Designing an effective HIV-1 envelope glycoprotein (Env) immunogen for elicitation of broadly neutralizing antibodies (bNAbs) is a challenging task because of the high sequence diversity, heavy glycosylation, and inherent meta-stability of Env. Based on the antigenic profile of recently isolated bNAbs, the rational approach to immunogen design is to make a stable version of the Env trimer, which mimics the native trimeric Env present on the viral surface. The SOSIP.664 form of a clade A Env, BG505, yields a homogeneous and well ordered prefusion trimeric form, which maintains structural integrity and desired antigenicity. Following the same approach, we attempted to stabilize a naturally occurring efficiently cleaved clade C Env, namely 4-2.J41, isolated from an Indian patient. Although the SOSIP form of 4-2.J41 failed to produce reasonably well ordered trimers, the 4-2.J41.SOSIP.664 Env could be stabilized in a native-like trimeric form by swapping a domain from BG505 Env to 4-2.J41 Env. Using various biochemical and biophysical means we confirmed that this engineered Env is cleaved, trimeric, and it retains its native-like quaternary conformation exposing mostly broadly neutralizing epitopes. Moreover, introduction of a disulfide bond in the bridging sheet region further stabilized the closed conformation of the Env. Thus, our 4-2.J41.SOSIP.664 Env adds to the increasing pool of potential immunogens for a HIV-1 vaccine, particularly for clade C, which is the most prevalent in India and many other countries. Besides, the approach used to stabilize the 4-2.J41 Env may be used successfully with Envs from other HIV-1 strains as well. Additionally, a soluble native trimeric form of an efficiently cleaved membrane-bound Env, 4-2.J41, may be beneficial for immunization studies using various prime-boost strategies.


Asunto(s)
VIH-1/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Vacunas contra el SIDA/metabolismo , Línea Celular , VIH-1/genética , VIH-1/inmunología , Humanos , Dominios Proteicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
10.
J Biol Chem ; 290(3): 1607-22, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25451937

RESUMEN

CAP-Gly domain of dynactin, a microtubule-associated activator of dynein motor, participates in multiple cellular processes, and its point mutations are associated with neurodegenerative diseases. Recently, we have demonstrated that conformational plasticity is an intrinsic property of CAP-Gly. To understand its origin, we addressed internal dynamics of CAP-Gly assembled on polymeric microtubules, bound to end-binding protein EB1 and free, by magic angle spinning NMR and molecular dynamics simulations. The analysis of residue-specific dynamics of CAP-Gly on time scales spanning nano- through milliseconds reveals its unusually high mobility, both free and assembled on polymeric microtubules. On the contrary, CAP-Gly bound to EB1 is significantly more rigid. Molecular dynamics simulations indicate that these motions are strongly temperature-dependent, and loop regions are surprisingly mobile. These findings establish the connection between conformational plasticity and internal dynamics in CAP-Gly, which is essential for the biological functions of CAP-Gly and its ability to bind to polymeric microtubules and multiple binding partners. In this work, we establish an approach, for the first time, to probe atomic resolution dynamic profiles of a microtubule-associated protein assembled on polymeric microtubules. More broadly, the methodology established here can be applied for atomic resolution analysis of dynamics in other microtubule-associated protein assemblies, including but not limited to dynactin, dynein, and kinesin motors assembled on microtubules.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animales , Sitios de Unión , Simulación por Computador , Citoesqueleto/metabolismo , Complejo Dinactina , Dineínas/metabolismo , Cinesinas/metabolismo , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Probabilidad , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Temperatura
11.
J Biol Chem ; 289(8): 4546-52, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24421317

RESUMEN

Herein, we report the development of a photocleavable analog of AP20187, a cell-permeable molecule used to dimerize FK506-binding protein (FKBP) fusion proteins and initiate biological signaling cascades and gene expression or disrupt protein-protein interactions. We demonstrate that this reagent permits the unique ability to rapidly and specifically antagonize a molecular interaction in vitro and follow a biological process due to this acute antagonism (e.g. endosome dispersion) and to release the trap upon photocleavage to follow the cell's return to homeostasis. In addition, this photocleavable AP20187 analog can be used in other systems where the dimerization of FKBP has been used to initiate signaling pathways, offering the ability to correlate the duration of a signaling event and a cellular response.


Asunto(s)
Multimerización de Proteína/efectos de la radiación , Tacrolimus/análogos & derivados , Rayos Ultravioleta , Animales , Células COS , Chlorocebus aethiops , Electroforesis en Gel de Poliacrilamida , Endosomas/metabolismo , Endosomas/efectos de la radiación , Proteínas Recombinantes de Fusión/metabolismo , Tacrolimus/síntesis química , Tacrolimus/química , Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo
12.
Int J Biol Macromol ; 277(Pt 3): 134428, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39097052

RESUMEN

Mitogen-activated protein kinase (MAPK) interacting protein kinases (Mnk1 and Mnk2) mediated phosphorylation of the eukaryotic initiation factor eIF4E is an important translation initiation control, in Mnk-mediated oncogenic activity and other disease conditions. Thus, Mnk kinases are an important target for therapy. Trypanosomatids are a class of kinetoplastids, some of which are protozoan parasites and cause diseases in humans. While protein translation initiation is well understood in eukaryotes and prokaryotes, there is a lack of sufficient structural information of this process in trypanosomatids. Here, we report that trypanosomatids have one orthologue of Mnk kinase with low overall sequence homology but high homology in the kinase domain and an additional C-terminal domain containing putative calmodulin binding site(s). We show that while many of the domains and motifs are conserved, homology modeling/structure prediction, docking analysis and molecular dynamics simulation studies suggest that trypanosomatid kMnk kinases, kinase domains are present in DFG-in conformation as opposed to the auto-inhibited DFD-out conformation of un-phosphorylated human Mnk1. Furthermore, we observed that several regulatory features are different in trypanosomatid kMnk kinases. Our study indicates that mechanism and regulation in the kinase domain of trypanosomatid kMnks are likely to be altered, and that they can be important drug targets.

13.
Hum Vaccin Immunother ; 20(1): 2351664, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38757508

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal beta-coronavirus that emerged in 2012. The virus is part of the WHO blueprint priority list with a concerning fatality rate of 35%. Scientific efforts are ongoing for the development of vaccines, anti-viral and biotherapeutics, which are majorly directed toward the structural spike protein. However, the ongoing effort is challenging due to conformational instability of the spike protein and the evasion strategy posed by the MERS-CoV. In this study, we have expressed and purified the MERS-CoV pre-fusion spike protein in the Expi293F mammalian expression system. The purified protein was extensively characterized for its biochemical and biophysical properties. Thermal stability analysis showed a melting temperature of 58°C and the protein resisted major structural changes at elevated temperature as revealed by fluorescence spectroscopy and circular dichroism. Immunological assessment of the MERS-CoV spike immunogen in BALB/c mice with AddaVaxTM and Imject alum adjuvants showed elicitation of high titer antibody responses but a more balanced Th1/Th2 response with AddaVaxTM squalene like adjuvant. Together, our results suggest the formation of higher-order trimeric pre-fusion MERS-CoV spike proteins, which were able to induce robust immune responses. The comprehensive characterization of MERS-CoV spike protein warrants a better understanding of MERS spike protein and future vaccine development efforts.


Asunto(s)
Anticuerpos Antivirales , Ratones Endogámicos BALB C , Coronavirus del Síndrome Respiratorio de Oriente Medio , Glicoproteína de la Espiga del Coronavirus , Vacunas Virales , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Animales , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas Virales/inmunología , Ratones , Femenino , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Inmunogenicidad Vacunal , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes de Vacunas , Humanos
14.
Virus Res ; 341: 199331, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38280436

RESUMEN

Dengue virus infection in humans ranges from asymptomatic infection to severe infection, with ∼2.5 % overall disease fatality rate. Evidence of neurological manifestations is seen in the severe form of the disease, which might be due to the direct invasion of the viruses into the CNS system but is poorly understood. In this study, we demonstrated that the aged AG129 mice are highly susceptible to dengue serotypes 1-4, and following the adaptation, this resulted in the generation of neurovirulent strains that showed enhanced replication, aggravated disease severity, increased neuropathogenesis, and high lethality in both adult and aged AG129 mice. The infected mice had endothelial dysfunction, elicited pro-inflammatory cytokine responses, and exhibited 100 % mortality. Further analysis revealed that aged-adapted DENV strains induced measurable alterations in TLR expression in the aged mice as compared to the adult mice. In addition, metabolomics analysis of the serum samples from the infected adult mice revealed dysregulation of 18 metabolites and upregulation of 6-keto-prostaglandin F1 alpha, phosphocreatine, and taurocholic acid. These metabolites may serve as key biomarkers to decipher and comprehend the severity of dengue-associated severe neuro-pathogenesis.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Animales , Ratones , Anciano , Virus del Dengue/fisiología , Citocinas/metabolismo , Modelos Animales de Enfermedad
15.
Vaccines (Basel) ; 11(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37112692

RESUMEN

Immunogens mimicking the native-like structure of surface-exposed viral antigens are considered promising vaccine candidates. Influenza viruses are important zoonotic respiratory viruses with high pandemic potential. Recombinant soluble hemagglutinin (HA) glycoprotein-based protein subunit vaccines against Influenza have been shown to induce protective efficacy when administered intramuscularly. Here, we have expressed a recombinant soluble trimeric HA protein in Expi 293F cells and purified the protein derived from the Inf A/Guangdong-Maonan/ SWL1536/2019 virus which was found to be highly virulent in the mouse. The trimeric HA protein was found to be in the oligomeric state, highly stable, and the efficacy study in the BALB/c mouse challenge model through intradermal immunization with the prime-boost regimen conferred complete protection against a high lethal dose of homologous and mouse-adapted InfA/PR8 virus challenge. Furthermore, the immunogen induced high hemagglutinin inhibition (HI) titers and showed cross-protection against other Inf A and Inf B subtypes. The results are promising and warrant trimeric HA as a suitable vaccine candidate.

16.
Protein J ; 41(4-5): 457-467, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36048314

RESUMEN

The newly emerging SARS-CoV-2 variants are potential threat and posing new challenges for medical intervention due to high transmissibility and escaping neutralizing antibody (NAb) responses. Many of these variants have mutations in the receptor binding domain (RBD) of SARS-CoV-2 spike protein that interacts with the host cell receptor. Rapid mutation in the RBD through natural selection to improve affinity for host receptor and antibody pressure from vaccinated or infected individual will greatly impact the presently adopted strategies for developing interventions. Understanding the nature of mutations and how they impact the biophysical, biochemical and immunological properties of the RBD will help immensely to improve the intervention strategies. To understand the impact of mutation on the protease sensitivity, thermal stability, affinity for the receptor and immune response, we prepared several mutants of soluble RBD that belong to the variants of concern (VoCs) and interest (VoIs) and characterize them. Our results show that the mutations do not impact the overall structure of the RBD. However, the mutants showed increase in the thermal melting point, few mutants were more sensitive to protease degradation, most of them have enhanced affinity for ACE2 and some of them induced better immune response compared to the parental RBD.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutación , Péptido Hidrolasas , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus
17.
Elife ; 112022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35475970

RESUMEN

L,D-transpeptidase function predominates in atypical 3 → 3 transpeptide networking of peptidoglycan (PG) layer in Mycobacterium tuberculosis. Prior studies of L,D-transpeptidases have identified only the catalytic site that binds to peptide moiety of the PG substrate or ß-lactam antibiotics. This insight was leveraged to develop mechanism of its activity and inhibition by ß-lactams. Here, we report identification of an allosteric site at a distance of 21 Å from the catalytic site that binds the sugar moiety of PG substrates (hereafter referred to as the S-pocket). This site also binds a second ß-lactam molecule and influences binding at the catalytic site. We provide evidence that two ß-lactam molecules bind co-operatively to this enzyme, one non-covalently at the S-pocket and one covalently at the catalytic site. This dual ß-lactam-binding phenomenon is previously unknown and is an observation that may offer novel approaches for the structure-based design of new drugs against M. tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Peptidil Transferasas , Antibacterianos/farmacología , Dominio Catalítico , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/metabolismo , Peptidil Transferasas/metabolismo , beta-Lactamas/metabolismo
18.
Int J Biol Macromol ; 217: 19-26, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35817240

RESUMEN

Dengue virus is transmitted by Aedes mosquitoes and dengue is endemic in many regions of the world. Severe dengue results in complications that may lead to death. Although some vaccine candidates are in clinical trials and one vaccine Dengvaxia, with restricted efficacy, is available, there are currently no specific therapies to completely prevent or treat dengue. The dengue virus structural protein E (envelope) exists as a head-to-tail dimer on mature virus, is targeted by broadly neutralizing antibodies and is suitable for developing vaccine immunogens. Here, we have used a redesigned dengue prME expression construct and immunoaffinity chromatography with conformational/quaternary antibody A11 to purify soluble DENV4 sE(A259C) (E ectodomain) dimers from mammalian expression system to ~99 % purity. These dimers retain glycosylation reported for native DENV E, display the three major broadly neutralizing antibody epitopes, and form well-ordered structure. This strategy can be used for developing subunit vaccine candidates against dengue and other flaviviruses.


Asunto(s)
Virus del Dengue , Dengue , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Dengue/prevención & control , Virus del Dengue/genética , Virus del Dengue/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas del Envoltorio Viral/metabolismo
19.
Int J Biol Macromol ; 209(Pt A): 1359-1367, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35469951

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 has a significant burden on the economy and healthcare around the world. Vaccines are the most effective tools to fight infectious diseases by containing the spread of the disease. The current vaccines against SARS-CoV-2 are mostly based on the spike protein of SARS-CoV-2, which is large and has many immune-dominant non-neutralizing epitopes that may effectively skew the antibody response towards non-neutralizing antibodies. Here, we have explored the possibility of immune-focusing the receptor binding motif (RBM) of the spike protein of SARS-CoV-2 that induces mostly neutralizing antibodies in natural infection or in vacinees. The result shows that the scaffolded RBM can bind to Angiotensin Converting Enzyme 2 (ACE2) although with low affinity and induces a strong antibody response in mice. The immunized sera can bind both, the receptor binding domain (RBD) and the spike protein, which holds the RBM in its natural context. Sera from the immunized mice showed robust interferon γ response but poor neutralization of SARS-CoV-2 suggesting presence of a predominant T cell epitope on scaffolded RBM. Together, we provide a strategy for inducing strong antigenic T cell response which could be exploited further for future vaccine designing and development against SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Epítopos , Humanos , Ratones , Pandemias/prevención & control , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/química
20.
Lancet Infect Dis ; 22(4): 473-482, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34838183

RESUMEN

BACKGROUND: SARS-CoV-2 variants of concern (VOCs) have threatened COVID-19 vaccine effectiveness. We aimed to assess the effectiveness of the ChAdOx1 nCoV-19 vaccine, predominantly against the delta (B.1.617.2) variant, in addition to the cellular immune response to vaccination. METHODS: We did a test-negative, case-control study at two medical research centres in Faridabad, India. All individuals who had a positive RT-PCR test for SARS-CoV-2 infection between April 1, 2021, and May 31, 2021, were included as cases and individuals who had a negative RT-PCR test were included as controls after matching with cases on calendar week of RT-PCR test. The primary outcome was effectiveness of complete vaccination with the ChAdOx1 nCoV-19 vaccine against laboratory-confirmed SARS-CoV-2 infection. The secondary outcomes were effectiveness of a single dose against SARS-CoV-2 infection and effectiveness of a single dose and complete vaccination against moderate-to-severe disease among infected individuals. Additionally, we tested in-vitro live-virus neutralisation and T-cell immune responses to the spike protein of the wild-type SARS-CoV-2 and VOCs among healthy (anti-nucleocapsid antibody negative) recipients of the ChAdOx1 nCoV-19 vaccine. FINDINGS: Of 2379 cases of confirmed SARS-CoV-2 infection, 85 (3·6%) were fully vaccinated compared with 168 (8·5%) of 1981 controls (adjusted OR [aOR] 0·37 [95% CI 0·28-0·48]), giving a vaccine effectiveness against SARS-CoV-2 infection of 63·1% (95% CI 51·5-72·1). 157 (6·4%) of 2451 of cases and 181 (9·1%) of 1994) controls had received a single dose of the ChAdOx1 nCoV-19 vaccine (aOR 0·54 [95% CI 0·42-0·68]), thus vaccine effectiveness of a single dose against SARS-CoV-2 infection was 46·2% (95% CI 31·6-57·7). One of 84 cases with moderate-to-severe COVID-19 was fully vaccinated compared with 84 of 2295 cases with mild COVID-19 (aOR 0·19 [95% CI 0·01-0·90]), giving a vaccine effectiveness of complete vaccination against moderate-to-severe disease of 81·5% (95% CI 9·9-99·0). The effectiveness of a single dose against moderate-to-severe disease was 79·2% (95% CI 46·1-94·0); four of 87 individuals with moderate-to-severe COVID-19 had received a single dose compared with 153 of 2364 participants with mild disease (aOR 0·20 [95% CI 0·06-0·54]). Among 49 healthy, fully vaccinated individuals, neutralising antibody responses were lower against the alpha (B.1.1.7; geometric mean titre 244·7 [95% CI 151·8-394·4]), beta (B.1.351; 97·6 [61·2-155·8]), kappa (B.1.617.1; 112·8 [72·7-175·0]), and delta (88·4 [61·2-127·8]) variants than against wild-type SARS-CoV-2 (599·4 [376·9-953·2]). However, the antigen-specific CD4 and CD8 T-cell responses were conserved against both the delta variant and wild-type SARS-CoV-2. INTERPRETATION: The ChAdOx1 nCoV-19 vaccine remained effective against moderate-to-severe COVID-19, even during a surge that was dominated by the highly transmissible delta variant of SARS-CoV-2. Spike-specific T-cell responses were maintained against the delta variant. Such cellular immune protection might compensate for waning humoral immunity. FUNDING: Department of Biotechnology India, Council of Scientific and Industrial Research India, and Fondation Botnar.


Asunto(s)
COVID-19 , SARS-CoV-2 , Formación de Anticuerpos , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios de Casos y Controles , ChAdOx1 nCoV-19 , Humanos , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA