Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Funct ; 15(13): 7224-7237, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38812412

RESUMEN

Yak-Kong (YK) is a small black soybean widely cultivated in Korea. It is considered to have excellent health functionality, as it has been reported to have better antioxidant efficacy than conventional black or yellow soybeans. Since YK has been described as good for the muscle health of the elderly in old oriental medicine books, this study sought to investigate the effect of fermented YK with Bifidobacterium animalis subsp. lactis LDTM 8102 (FYK) on muscle atrophy. In C2C12 mouse myoblasts, FYK elevated the expression of MyoD, total MHC, phosphorylated AKT, and PGC1α. In addition, two kinds of in vivo studies were conducted using both an induced and normal aging mouse model. The behavioral test results showed that in the induced aging mouse model, FYK intake alleviated age-related muscle weakness and loss of exercise performance. In addition, FYK alleviated muscle mass decrease and improved the expression of biomarkers including total MHC, myf6, phosphorylated AKT, PGC1α, and Tfam, which are related to myoblast differentiation, muscle protein synthesis, and mitochondrial generation in the muscle. In the normal aging model, FYK consumption did not increase muscle mass, but did upregulate the expression levels of biomarkers related to myoblast differentiation, muscle hypertrophy, and muscle function. Furthermore, it mitigated age-related declines in skeletal muscle force production and functional limitation by enhancing exercise performance and grip strength. Taken together, the results suggest that FYK has the potential to be a new functional food material that can alleviate the loss of muscle mass and strength caused by aging and prevent sarcopenia.


Asunto(s)
Envejecimiento , Bifidobacterium animalis , Atrofia Muscular , Animales , Ratones , Atrofia Muscular/metabolismo , Masculino , Bifidobacterium animalis/fisiología , Fermentación , Modelos Animales de Enfermedad , República de Corea , Músculo Esquelético/metabolismo , Probióticos , Intestinos/microbiología , Alimentos de Soja , Humanos , Mioblastos/metabolismo , Glycine max/química , Ratones Endogámicos C57BL
2.
Small Methods ; : e2300969, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095424

RESUMEN

The surface treatment for a polymer-ceramic composite is additionally performed in advanced material industries. To prepare the composite without a surface treatment, the simplest way to manufacture an advanced ceramic-particle is devised. The method is the formation of a nanocrystalline composite layer through the simple liquid-phase sintering. Using magnesia (MgO) which shows hydrophilicity, a nanocrystalline surface layer is realized by liquid-phase sintering. The amorphous matrix of nanocrystalline composite layer makes MgO hydrophobic and ensures miscibility with polymers, and the nanocrystalline MgO ensures high thermal conductivity. In addition, the liquid phase removes the open pores and makes the surface morphology smooth MgO with smooth surface (MgO-SM). Thermal interface materials (TIM) prepared with MgO-SM and epoxy show a high thermal conductivity of ≈7.5 W m-1 K-1 , which is significantly higher than 4.5 W m-1 K-1 of pure MgO TIM. Consequently, the formation process of a nanocrystalline surface layer utilizing simple liquid-phase sintering is proposed as a fabrication method for a next-generation ceramic-filler. In addition, it is fundamentally identified that the thermal conductivity of MgO depends on the Mg deficiency, and therefore a poly-crystal MgO-SM (produced at a low temperature) has a higher thermal conductivity than a single-crystal MgO (produced at a high temperature).

3.
Materials (Basel) ; 14(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34640001

RESUMEN

Sodium metal chloride batteries have become a substantial focus area in the research on prospective alternatives for battery energy storage systems (BESSs) since they are more stable than lithium ion batteries. This study demonstrates the effects of the cathode microstructure on the electrochemical properties of sodium metal chloride cells. The cathode powder is manufactured in the form of granules composed of a metal active material and NaCl, and the ionic conductivity is attained by filling the interiors of the granules with a second electrolyte (NaAlCl4). Thus, the microstructure of the cathode powder had to be optimized to ensure that the second electrolyte effectively penetrated the cathode granules. The microstructure was modified by selecting the NaCl size and density of the cathode granules, and the resulting Na/(Ni,Fe)Cl2 cell showed a high capacity of 224 mAh g-1 at the 100th cycle owing to microstructural improvements. These findings demonstrate that control of the cathode microstructure is essential when cathode powders are used to manufacture sodium metal chloride batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA