Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 110(12): 2003-2014, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37924808

RESUMEN

The c.1222C>T (p.Arg408Trp) variant in the phenylalanine hydroxylase gene (PAH) is the most frequent cause of phenylketonuria (PKU), the most common inborn error of metabolism. This autosomal-recessive disorder is characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Using real-world data, we observed that despite dietary and medical interventions, most PKU individuals harboring at least one c.1222C>T variant experience chronic, severe Phe elevations and do not comply with Phe monitoring guidelines. Motivated by these findings, we generated an edited c.1222C>T hepatocyte cell line and humanized c.1222C>T mouse models, with which we demonstrated efficient in vitro and in vivo correction of the variant with prime editing. Delivery via adeno-associated viral (AAV) vectors reproducibly achieved complete normalization of blood Phe levels in PKU mice, with up to 52% whole-liver corrective PAH editing. These studies validate a strategy involving prime editing as a potential treatment for a large proportion of individuals with PKU.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Ratones , Animales , Fenilcetonurias/genética , Fenilcetonurias/terapia , Fenilalanina Hidroxilasa/genética , Modelos Animales de Enfermedad , Fenilalanina/genética , Edición Génica
2.
Mol Ther ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39169621

RESUMEN

Multiple sulfatase deficiency (MSD) is a severe, lysosomal storage disorder caused by pathogenic variants in the gene SUMF1, encoding the sulfatase modifying factor formylglycine-generating enzyme. Patients with MSD exhibit functional deficiencies in all cellular sulfatases. The inability of sulfatases to break down their substrates leads to progressive and multi-systemic complications in patients, similar to those seen in single-sulfatase disorders such as metachromatic leukodystrophy and mucopolysaccharidoses IIIA. Here, we aimed to determine if hematopoietic stem cell transplant with ex vivo SUMF1 lentiviral gene therapy could improve outcomes in a clinically relevant mouse model of MSD. We first tested our approach in MSD patient-derived cells and found that our SUMF1 lentiviral vector improved protein expression, sulfatase activities, and glycosaminoglycan accumulation. In vivo, we found that our gene therapy approach rescued biochemical deficits, including sulfatase activity and glycosaminoglycan accumulation, in affected organs of MSD mice treated post-symptom onset. In addition, treated mice demonstrated improved neuroinflammation and neurocognitive function. Together, these findings suggest that SUMF1 HSCT-GT can improve both biochemical and functional disease markers in the MSD mouse.

3.
Mol Genet Metab ; 141(2): 108116, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161139

RESUMEN

Multiple sulfatase deficiency (MSD) is an ultra-rare, inherited lysosomal storage disease caused by mutations in the gene sulfatase modifying factor 1 (SUMF1). MSD is characterized by the functional deficiency of all sulfatase enzymes, leading to the storage of sulfated substrates including glycosaminoglycans (GAGs), sulfolipids, and steroid sulfates. Patients with MSD experience severe neurological impairment, hearing loss, organomegaly, corneal clouding, cardiac valve disease, dysostosis multiplex, contractures, and ichthyosis. Here, we generated a novel human model of MSD by reprogramming patient peripheral blood mononuclear cells to establish an MSD induced pluripotent stem cell (iPSC) line (SUMF1 p.A279V). We also generated an isogenic control iPSC line by correcting the pathogenic variant with CRISPR/Cas9 gene editing. We successfully differentiated these iPSC lines into neural progenitor cells (NPCs) and NGN2-induced neurons (NGN2-iN) to model the neuropathology of MSD. Mature neuronal cells exhibited decreased SUMF1 gene expression, increased lysosomal stress, impaired neurite outgrowth and maturation, reduced sulfatase activities, and GAG accumulation. Interestingly, MSD iPSCs and NPCs did not exhibit as severe of phenotypes, suggesting that as neurons differentiate and mature, they become more vulnerable to loss of SUMF1. In summary, we demonstrate that this human iPSC-derived neuronal model recapitulates the cellular and biochemical features of MSD. These cell models can be used as tools to further elucidate the mechanisms of MSD pathology and for the development of therapeutics.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedad por Deficiencia de Múltiples Sulfatasas , Humanos , Leucocitos Mononucleares/metabolismo , Neuronas/patología , Sulfatasas , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro
4.
J Pediatr ; 265: 113808, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37923198

RESUMEN

OBJECTIVE: To assess the diagnostic yield of exome sequencing (ES) in pediatric cardiomyopathy. STUDY DESIGN: A single-institution, retrospective chart review of 91 patients with pediatric cardiomyopathy was performed. While pediatric cardiomyopathy is often genetic in nature, no genetic test is recommended as standard of care. All our patients were diagnosed with cardiomyopathy and evaluated by a medical geneticist between January 2010 through September 2022. Demographic information and clinical data were abstracted. RESULTS: Of 91 patients with pediatric cardiomyopathy, 36 (39.6%) received a diagnosis by ES. Twenty-two (61.1%) of these diagnoses would have been missed on cardiac multigene panel testing. The diagnostic yield for cardiomyopathy presenting under 1 year of age was 38.3%, while the yield for patients over 1 year of age was 41.9%. CONCLUSIONS: ES has a high diagnostic yield in pediatric cardiomyopathy compared with a gene panel. Over 60% of patients with diagnosis by ES would not have received their molecular genetic diagnosis if only multigene panel testing was sent. Diagnostic yield did not vary significantly between the subtypes of cardiomyopathy and patient age groups, highlighting the likely clinical utility of ES for all pediatric cardiomyopathy patients.


Asunto(s)
Cardiomiopatías , Médicos , Humanos , Niño , Secuenciación del Exoma , Estudios Retrospectivos , Pruebas Genéticas , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética
5.
Cytotherapy ; 26(7): 739-748, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613540

RESUMEN

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.


Asunto(s)
Leucodistrofia Metacromática , Humanos , Recién Nacido , Cerebrósido Sulfatasa/genética , Consenso , Terapia Genética/métodos , Leucodistrofia Metacromática/terapia , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Tamizaje Neonatal/métodos , Estados Unidos
6.
Am J Med Genet A ; : e63817, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031459

RESUMEN

Exome sequencing (ES) has emerged as an essential tool in the evaluation of neurodevelopmental disorders (NDD) of unknown etiology. Genome sequencing (GS) offers advantages over ES due to improved detection of structural, copy number, repeat number and non-coding variants. However, GS is less commonly utilized due to higher cost and more intense analysis. Here, we present nine cases of pediatric NDD that were molecularly diagnosed with GS between 2017 and 2022, following non-diagnostic ES. All individuals presented with global developmental delay or regression. Other features present in our cohort included epilepsy, white matter abnormalities, brain malformation and dysmorphic features. Two cases were diagnosed on GS due to newly described gene-disease relationship or variant reclassification (MAPK8IP3, CHD3). Additional features missed on ES that were later detected on GS were: intermediate-size deletions in three cases who underwent ES that were not validated for CNV detection, pathogenic variants within the non-protein coding genes SNORD118 and RNU7-1, pathogenic variant within the promoter region of GJB1, and a coding pathogenic variant within BCAP31 which was not sufficiently covered on ES. GS following non-diagnostic ES led to the identification of pathogenic variants in this cohort of nine cases, four of which would not have been identified by reanalysis alone.

7.
J Inherit Metab Dis ; 47(2): 374-386, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37870986

RESUMEN

Sulfatases catalyze essential cellular reactions, including degradation of glycosaminoglycans (GAGs). All sulfatases are post-translationally activated by the formylglycine generating enzyme (FGE) which is deficient in multiple sulfatase deficiency (MSD), a neurodegenerative lysosomal storage disease. Historically, patients were presumed to be deficient of all sulfatase activities; however, a more nuanced relationship is emerging. Each sulfatase may differ in their degree of post-translational modification by FGE, which may influence the phenotypic spectrum of MSD. Here, we evaluate if residual sulfatase activity and accumulating GAG patterns distinguish cases from controls and stratify clinical severity groups in MSD. We quantify sulfatase activities and GAG accumulation using three complementary methods in MSD participants. Sulfatases differed greatly in their tolerance of reduction in FGE-mediated activation. Enzymes that degrade heparan sulfate (HS) demonstrated lower residual activities than those that act on other GAGs. Similarly, HS-derived urinary GAG subspecies preferentially accumulated, distinguished cases from controls, and correlated with disease severity. Accumulation patterns of specific sulfatase substrates in MSD provide fundamental insights into sulfatase regulation and will serve as much-needed biomakers for upcoming clinical trials. This work highlights that biomarker investigation of an ultra-rare disease can simultaneously inform our understanding of fundamental biology and advance clinical trial readiness efforts.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Enfermedad por Deficiencia de Múltiples Sulfatasas , Humanos , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Sulfatasas , Glicosaminoglicanos , Heparitina Sulfato , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Gravedad del Paciente
8.
Mol Ther ; 30(7): 2464-2473, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35395398

RESUMEN

Although neurologic symptoms occur in two-thirds of lysosomal storage disorders (LSDs), for most we do not understand the mechanisms underlying brain dysfunction. A major unanswered question is if the pathogenic hallmark of LSDs, storage accumulation, induces functional defects directly or is a disease bystander. Also, for most LSDs we do not know the impact of loss of function in individual cell types. Understanding these critical questions are essential to therapy development. Here, we determine the impact of genetic rescue in distinct cell types on neural circuit dysfunction in CLN3 disease, the most common pediatric dementia and a paradigmatic neurodegenerative LSD. We restored Cln3 expression via AAV-mediated gene delivery and conditional genetic rescue in a CLN3 disease mouse model. Surprisingly, we found that low-level rescue of Cln3 expression in neurons alone normalized clinically relevant electrophysiologic markers of network dysfunction, despite the presence of substantial residual histopathology, in contrast to restoring expression in astrocytes. Thus, loss of CLN3 function in neurons, not storage accumulation, underlies neurologic dysfunction in CLN3 disease. This impliesies that storage clearance may be an inappropriate target for therapy development and an ineffectual biomarker.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal , Lipofuscinosis Ceroideas Neuronales , Animales , Encéfalo/metabolismo , Niño , Humanos , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/terapia , Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/terapia , Neuronas/metabolismo
9.
J Med Genet ; 59(11): 1058-1068, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35232796

RESUMEN

BACKGROUND: A neurodevelopmental syndrome was recently reported in four patients with SOX4 heterozygous missense variants in the high-mobility-group (HMG) DNA-binding domain. The present study aimed to consolidate clinical and genetic knowledge of this syndrome. METHODS: We newly identified 17 patients with SOX4 variants, predicted variant pathogenicity using in silico tests and in vitro functional assays and analysed the patients' phenotypes. RESULTS: All variants were novel, distinct and heterozygous. Seven HMG-domain missense and five stop-gain variants were classified as pathogenic or likely pathogenic variant (L/PV) as they precluded SOX4 transcriptional activity in vitro. Five HMG-domain and non-HMG-domain missense variants were classified as of uncertain significance (VUS) due to negative results from functional tests. When known, inheritance was de novo or from a mosaic unaffected or non-mosaic affected parent for patients with L/PV, and from a non-mosaic asymptomatic or affected parent for patients with VUS. All patients had neurodevelopmental, neurological and dysmorphic features, and at least one cardiovascular, ophthalmological, musculoskeletal or other somatic anomaly. Patients with L/PV were overall more affected than patients with VUS. They resembled patients with other neurodevelopmental diseases, including the SOX11-related and Coffin-Siris (CSS) syndromes, but lacked the most specific features of CSS. CONCLUSION: These findings consolidate evidence of a fairly non-specific neurodevelopmental syndrome due to SOX4 haploinsufficiency in neurogenesis and multiple other developmental processes.


Asunto(s)
Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Trastornos del Neurodesarrollo , Humanos , Micrognatismo/genética , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Síndrome , Fenotipo , ADN , Factores de Transcripción SOXC/genética
10.
Pediatr Cardiol ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37725123

RESUMEN

In children with hypertrophic cardiomyopathy (HCM), the genotype-phenotype association of abnormal electrocardiographic (ECG) features in the backdrop of gene positivity has not been well described. This study aimed to describe the abnormal ECG findings in children with HCM harboring who have genetic variants and determine the association with major adverse cardiac events (MACE). We retrospectively analyzed 81 variants-positive, phenotype-positive (V+P+), 66 variant-positive, phenotype-negative (V+P-), and 85 non-sarcomeric subjects. We analyzed ECG findings and clinical outcomes in the three groups of subjects. Repolarization abnormalities (ST and T wave changes) and pathologic Q waves were the most common abnormalities in variant and non-sarcomeric subjects. The V+P+ group showed higher occurrence of ST segment changes and T wave abnormalities compared to V+P- group. Independent predictors of MACE included ST segment changes (OR 3.54, CI 1.20-10.47, p = 0.022). T wave changes alone did not predict outcome (OR 2.13, CI 0.75-6.07, p = 0.157), but combined repolarization abnormalities (ST+T changes) were strong predictors of MACE (OR 5.84, CI 1.43-23.7, p = 0.014) than ST segment changes alone. Maximal wall z score by echocardiography was a predictor of MACE (OR 1.21, CI 1.07-1.37, p = 0.002). Despite the presence of significant myocardial hypertrophy (z score > 4.7), voltage criteria for LVH were much less predictive. In the non-sarcomeric group, RVH was significantly associated with MACE (OR 3.85, CI 1.08-13.73, p = 0.038). These abnormal ECG findings described on the platform of known genetic status and known myocardial hypertrophy may add incremental value to the diagnosis and surveillance of disease progression in children with HCM. Select ECG findings, particularly repolarization abnormalities, may serve as predictors of MACE in children.

11.
Cardiol Young ; 33(4): 652-654, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35989466

RESUMEN

Noonan syndrome is an inherited disorder caused by alterations in the RAS-MAPK pathway. There have been several identified genotype-phenotype associations made with respect to congenital cardiac lesions and Noonan syndrome variants, but limited data exist regarding single ventricle disease in this population. Here, we report two patients with PTPN11-related Noonan syndrome and hypoplastic left heart syndrome variants.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico , Síndrome de Noonan , Humanos , Síndrome de Noonan/complicaciones , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Síndrome del Corazón Izquierdo Hipoplásico/complicaciones , Síndrome del Corazón Izquierdo Hipoplásico/genética , Mutación , Estudios de Asociación Genética , Fenotipo
12.
J Pediatr ; 248: 89-93, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35577121

RESUMEN

OBJECTIVE: To evaluate Mendelian causes of neurodegenerative disorders in a cohort of pediatric patients. STUDY DESIGN: Patients enrolled in the Center for Applied Genomics Biobank at the Children's Hospital of Philadelphia with neurodegenerative symptoms were identified using an algorithm that consisted of including and excluding selected International Classification of Diseases, 9th and 10th edition codes. A manual chart review was then performed to abstract detailed clinical information. RESULTS: Of approximately 100 000 patients enrolled in the Center for Applied Genomics Biobank, 76 had a neurodegenerative phenotype. After chart review, 7 patients were excluded. Of the remaining 69 patients, 42 had a genetic diagnosis (60.9%) and 27 were undiagnosed (39.1%). There were 32 unique disorders. Common diagnoses included Rett syndrome, mitochondrial disorders, and neuronal ceroid lipofuscinoses. CONCLUSIONS: The disorders encountered in our cohort demonstrate the diverse diseases and pathophysiology that contribute to pediatric neurodegeneration. Establishing a diagnosis often informed clinical management, although curative treatment options are lacking. Many patients who underwent genetic evaluation remained undiagnosed, highlighting the importance of continued research efforts in this field.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Algoritmos , Niño , Estudios de Cohortes , Hospitales Pediátricos , Humanos , Fenotipo
13.
Am J Med Genet A ; 188(9): 2772-2776, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35491958

RESUMEN

MYH7, encoding the myosin heavy chain sarcomeric ß-myosin heavy chain, is a common cause of both hypertrophic and dilated cardiomyopathy. Additionally, families with left ventricular noncompaction cardiomyopathy (LVNC) and congenital heart disease (CHD), typically septal defects or Ebstein anomaly, have been identified to have heterozygous pathogenic variants in MHY7. One previous case of single ventricle CHD with heart failure due to a MYH7 variant has been identified. Herein, we present a single center's experience of complex CHD due to MYH7 variants. Three probands with a history of CHD, LVNC, and/or arrhythmias were identified to have MYH7 variants through multigene panel testing or exome sequencing. These three patients collectively had 12 affected family members, four with a history of Ebstein anomaly and seven with a history of LVNC. These findings suggest a wider phenotypic spectrum in MYH7-related CHD than previously understood. Further investigation into the possible role of MYH7 in CHD and mechanism of disease is necessary to fully delineate the phenotypic spectrum of MYH7-related cardiac disease. MYH7 should be considered for families with multiple individuals with complex CHD in the setting of a family history of LVNC or arrhythmias.


Asunto(s)
Cardiomiopatías , Anomalía de Ebstein , Cardiopatías Congénitas , Arritmias Cardíacas/complicaciones , Arritmias Cardíacas/genética , Miosinas Cardíacas/genética , Cardiomiopatías/etiología , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/genética , Humanos , Mutación , Cadenas Pesadas de Miosina/genética
14.
Am J Med Genet A ; 185(1): 228-233, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33103328

RESUMEN

The NatA N-acetyltransferase complex is important for cotranslational protein modification and regulation of multiple cellular processes. The NatA complex includes the core components of NAA10, the catalytic subunit, and NAA15, the auxiliary component. Both NAA10 and NAA15 have been associated with neurodevelopmental disorders with overlapping clinical features, including variable intellectual disability, dysmorphic facial features, and, less commonly, congenital anomalies such as cleft lip or palate. Cardiac arrhythmias, including long QT syndrome, ventricular tachycardia, and ventricular fibrillation were among the first reported cardiac manifestations in patients with NAA10-related syndrome. Recently, three individuals with NAA10-related syndrome have been reported to also have hypertrophic cardiomyopathy (HCM). The general and cardiac phenotypes of NAA15-related syndrome are not as well described as NAA10-related syndrome. Congenital heart disease, including ventricular septal defects, and arrhythmias, such as ectopic atrial tachycardia, have been reported in a small proportion of patients with NAA15-related syndrome. Given the relationship between NAA10 and NAA15, we propose that HCM is also likely to occur in NAA15-related disorder. We present two patients with pediatric HCM found to have NAA15-related disorder via exome sequencing, providing the first evidence that variants in NAA15 can cause HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Discapacidad Intelectual/genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cardiomiopatía Hipertrófica/complicaciones , Cardiomiopatía Hipertrófica/patología , Niño , Facies , Predisposición Genética a la Enfermedad , Humanos , Lactante , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/patología , Masculino , Atrofia Muscular/complicaciones , Atrofia Muscular/genética , Atrofia Muscular/patología , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Pediatría , Secuenciación del Exoma
15.
Pediatr Res ; 89(6): 1470-1476, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32746448

RESUMEN

BACKGROUND: Previous genetic research in pediatric cardiomyopathy (CM) has focused on pathogenic variants for diagnostic purposes, with limited data evaluating genotype-outcome correlations. We explored whether greater genetic variant burden (pathogenic or variants of unknown significance, VUS) correlates with worse outcomes. METHODS: Children with dilated CM (DCM) and hypertrophic CM (HCM) who underwent multigene testing between 2010 and 2018 were included. Composite endpoint was freedom from major adverse cardiac event (MACE). RESULTS: Three hundred and thirty-eight subjects were included [49% DCM, median age 5.7 (interquartile range (IQR) 0.2-13.4) years, 51% HCM, median age 3.0 (IQR 0.1-12.5) years]. Pathogenic variants alone were not associated with MACE in either cohort (DCM p = 0.44; HCM p = 0.46). In DCM, VUS alone [odds ratio (OR) 4.0, 95% confidence interval (CI) 1.9-8.3] and in addition to pathogenic variants (OR 5.2, 95% CI 1.7-15.9) was associated with MACE. The presence of VUS alone or in addition to pathogenic variants were not associated with MACE in HCM (p = 0.22 and p = 0.33, respectively). CONCLUSION: Increased genetic variant burden (pathogenic variants and VUS) is associated with worse clinical outcomes in DCM but not HCM. Genomic variants that influence DCM onset may be distinct from those driving disease progression, highlighting the potential value of universal genetic testing to improve risk stratification. IMPACT: In pediatric CM, inconsistent findings historically have been shown between genotype and phenotype severity when only pathogenic variants have been considered. Increased genetic variant burden (including both pathogenic variants and VUS) is associated with worse clinical outcomes in DCM but not HCM. Genomic variants that influence CM onset may be distinct from those variants that drive disease progression and influence outcomes in phenotype-positive individuals. Incorporation of both pathogenic variants and VUS may improve risk stratification models in pediatric CM.


Asunto(s)
Cardiomiopatías/genética , Adolescente , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Lactante , Recién Nacido , Masculino
16.
Pediatr Res ; 90(2): 444-451, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33318624

RESUMEN

BACKGROUND: Noonan Syndrome with Multiple Lentigines (NSML) and Noonan Syndrome (NS) can be difficult to differentiate clinically in early childhood. This study aims to describe characteristics of the ventricular septum that may differentiate NSML from NS. We hypothesize that the shape of the ventricular septum determined by echocardiography correlates with genotype and may distinguish patients with NSML from those with NS. METHODS: We analyzed data from 17 NSML and 67 NS patients. Forty normal and 30 sarcomeric hypertrophic cardiomyopathy (HCM) patients were included as controls. Septal morphology was qualitatively evaluated, and septal angle was measured quantitatively at end diastole. We recorded the presence of a ventricular septal bulge (VSB) and reviewed genetic testing results for each patient. RESULTS: The most important findings were a sigmoid septum (71%) and VSB (71%) in NSML. NSML septal angle was decreased compared to the normal and sarcomeric HCM control groups, respectively (149 ± 13 vs. 177 ± 3, p < 0.001; 149 ± 13 vs. 172 ± 7, p < 0.001). NS septal angle was similar to the controls (176 ± 6 vs. 177 ± 3, p > 0.5; 176 ± 6 vs. 172 ± 7, p > 0.5). NSML-linked pathogenic variants were associated with sigmoid septum and VSB. CONCLUSIONS: These findings provide novel phenotypic evidence to clinicians that may offer incremental diagnostic value in counseling families in ambiguous NSML/NS cases. IMPACT: Characteristics of the ventricular septum are linked to specific gene variants that cause NSML and NS. Sigmoid septum and VSB are associated with NSML. This novel echocardiographic association may help clinicians distinguish NSML from NS in ambiguous cases. Early distinction between the two may be important, as syndrome-specific therapies may become available in the near future. This study may encourage further research into genotype-phenotype associations in other forms of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/diagnóstico por imagen , Ecocardiografía , Síndrome LEOPARD/genética , Mutación , Síndrome de Noonan/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Tabique Interventricular/diagnóstico por imagen , Adolescente , Adulto , Cardiomiopatía Hipertrófica/etiología , Niño , Preescolar , Diagnóstico Diferencial , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Síndrome LEOPARD/complicaciones , Síndrome LEOPARD/diagnóstico , Masculino , Síndrome de Noonan/complicaciones , Síndrome de Noonan/diagnóstico , Fenotipo , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Adulto Joven
17.
Genet Med ; 22(2): 423-426, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31527676

RESUMEN

PURPOSE: Pediatric cardiomyopathy is rare, has a broad differential diagnosis, results in high morbidity and mortality, and has suboptimal diagnostic yield using next-generation sequencing panels. Exome sequencing has reported diagnostic yields ranging from 30% to 57% for neonates in intensive care units. We aimed to characterize the clinical utility of exome sequencing in infantile heart failure. METHODS: Infants diagnosed with acute heart failure prior to 1 year old over a period of 34 months at a large tertiary children's hospital were recruited. Demographic and diagnostic information was obtained from medical records. Fifteen eligible patients were enrolled. RESULTS: Dilated cardiomyopathy was the predominant cardiac diagnosis, seen in 60% of patients. A molecular diagnosis was identified in 66.7% of patients (10/15). Of those diagnoses, 70% would not have been detected using multigene next-generation sequencing panels focused on cardiomyopathy or arrhythmia disease genes. Genetic testing changed medical decision-making in 53% of all cases and 80% of positive cases, and was especially beneficial when testing was expedited. CONCLUSION: Given the broad differential diagnosis and critical status of infants with heart failure, rapid exome sequencing provides timely diagnoses, changes medical management, and should be the first-tier molecular test.


Asunto(s)
Secuenciación del Exoma/tendencias , Pruebas Genéticas/ética , Insuficiencia Cardíaca/diagnóstico , Cardiomiopatías/genética , Cardiomiopatía Dilatada/genética , Exoma/genética , Femenino , Pruebas Genéticas/tendencias , Insuficiencia Cardíaca/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Lactante , Recién Nacido , Masculino , Resultado del Tratamiento , Secuenciación del Exoma/métodos
18.
Am J Med Genet A ; 182(9): 2058-2067, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32686290

RESUMEN

SMARCA4 encodes a central ATPase subunit in the BRG1-/BRM-associated factors (BAF) or polybromo-associated BAF (PBAF) complex in humans, which is responsible in part for chromatin remodeling and transcriptional regulation. Variants in this and other genes encoding BAF/PBAF complexes have been implicated in Coffin-Siris Syndrome, a multiple congenital anomaly syndrome classically characterized by learning and developmental differences, coarse facial features, hypertrichosis, and underdevelopment of the fifth digits/nails of the hands and feet. Individuals with SMARCA4 variants have been previously reported and appear to display a variable phenotype. We describe here a cohort of 15 unrelated individuals with SMARCA4 variants from the Coffin-Siris syndrome/BAF pathway disorders registry who further display variability in severity and degrees of learning impairment and health issues. Within this cohort, we also report two individuals with novel nonsense variants who appear to have a phenotype of milder learning/behavioral differences and no organ-system involvement.


Asunto(s)
Anomalías Múltiples/genética , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Cara/anomalías , Predisposición Genética a la Enfermedad , Deformidades Congénitas de la Mano/genética , Discapacidad Intelectual/genética , Micrognatismo/genética , Cuello/anomalías , Proteínas Nucleares/genética , Factores de Transcripción/genética , Anomalías Múltiples/epidemiología , Anomalías Múltiples/patología , Adolescente , Niño , Preescolar , Proteínas Cromosómicas no Histona/genética , Codón sin Sentido/genética , Cara/patología , Femenino , Estudios de Asociación Genética , Deformidades Congénitas de la Mano/epidemiología , Deformidades Congénitas de la Mano/patología , Humanos , Lactante , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/patología , Masculino , Micrognatismo/epidemiología , Micrognatismo/patología , Cuello/patología , Fenotipo
19.
J Inherit Metab Dis ; 43(6): 1288-1297, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32621519

RESUMEN

Multiple Sulfatase Deficiency (MSD, MIM#272200) is an ultra-rare lysosomal storage disorder arising from mutations in the SUMF1 gene, which encodes the formylglycine-generating enzyme (FGE). FGE is necessary for the activation of sulfatases, a family of enzymes that are involved in the degradation of sulfated substrates such as glycosaminoglycans and sulfolipids. SUMF1 mutations lead to functionally impaired FGE and individuals with MSD demonstrate clinical signs of single sulfatase deficiencies, including metachromatic leukodystrophy (MLD) and several mucopolysaccharidosis (MPS) subtypes. Comprehensive information related to the natural history of MSD is missing. We completed a systematic literature review and a meta-analysis on data from published cases reporting on MSD. As available from these reports, we extracted clinical, genetic, biochemical, and brain imaging information. We identified 75 publications with data on 143 MSD patients with a total of 53 unique SUMF1 mutations. The mean survival was 13 years (95% CI 9.8-16.2 years). Seventy-five clinical signs and 11 key clusters of signs were identified. The most frequently affected organs systems were the nervous, skeletal, and integumentary systems. The most frequent MRI features were abnormal myelination and cerebral atrophy. Individuals with later onset MSD signs and survived longer than those with signs at birth. Less severe mutations, low disease burden and achievement of independent walking positively correlated with longer survival. Despite the limitations of our approach, we were able to define clinical characteristics and disease outcomes in MSD. This work will provide the foundation of natural disease history data needed for future clinical trial design.


Asunto(s)
Leucodistrofia Metacromática/genética , Mucopolisacaridosis/genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Glicina/análogos & derivados , Glicina/genética , Glicina/metabolismo , Humanos , Leucodistrofia Metacromática/patología , Mucopolisacaridosis/patología , Enfermedad por Deficiencia de Múltiples Sulfatasas/patología , Procesamiento Proteico-Postraduccional/genética , Sulfatasas/deficiencia , Sulfatasas/genética
20.
J Inherit Metab Dis ; 43(6): 1298-1309, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32749716

RESUMEN

Multiple sulfatase deficiency (MSD) is an ultra-rare neurodegenerative disorder caused by pathogenic variants in SUMF1. This gene encodes formylglycine-generating enzyme (FGE), a protein required for sulfatase activation. The clinical course of MSD results from additive effect of each sulfatase deficiency, including metachromatic leukodystrophy (MLD), several mucopolysaccharidoses (MPS II, IIIA, IIID, IIIE, IVA, VI), chondrodysplasia punctata, and X-linked ichthyosis. While it is known that affected individuals demonstrate a complex and severe phenotype, the genotype-phenotype relationship and detailed clinical course is unknown. We report on 35 cases enrolled in our retrospective natural history study, n = 32 with detailed histories. Neurologic function was longitudinally assessed with retrospective scales. Biochemical and computational modeling of novel SUMF1 variants was performed. Genotypes were classified based on predicted functional change, and each individual was assigned a genotype severity score. The median age at symptom onset was 0.25 years; median age at diagnosis was 2.7 years; and median age at death was 13 years. All individuals demonstrated developmental delay, and only a subset of individuals attained ambulation and verbal communication. All subjects experienced an accumulating systemic symptom burden. Earlier age at symptom onset and severe variant pathogenicity correlated with poor neurologic outcomes. Using retrospective deep phenotyping and detailed variant analysis, we defined the natural history of MSD. We found that attenuated cases can be distinguished from severe cases by age of onset, attainment of ambulation, and genotype. Results from this study can help inform prognosis and facilitate future study design.


Asunto(s)
Leucodistrofia Metacromática/genética , Mucopolisacaridosis/genética , Enfermedad por Deficiencia de Múltiples Sulfatasas/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Adolescente , Niño , Preescolar , Femenino , Genotipo , Glicina/análogos & derivados , Glicina/genética , Glicina/metabolismo , Humanos , Lactante , Internacionalidad , Leucodistrofia Metacromática/patología , Masculino , Mucopolisacaridosis/patología , Enfermedad por Deficiencia de Múltiples Sulfatasas/patología , Mutación , Fenotipo , Enfermedades Raras , Estudios Retrospectivos , Sulfatasas/deficiencia , Sulfatasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA