RESUMEN
IL3RA (CD123) is the alpha subunit of the interleukin 3 (IL-3) receptor, which regulates the proliferation, survival, and differentiation of hematopoietic cells. IL3RA is frequently expressed in acute myeloid leukemia (AML) and classical Hodgkin lymphoma (HL), presenting an opportunity to treat AML and HL with an IL3RA-directed antibody-drug conjugate (ADC). Here, we describe BAY-943 (IL3RA-ADC), a novel IL3RA-targeting ADC consisting of a humanized anti-IL3RA antibody conjugated to a potent proprietary kinesin spindle protein inhibitor (KSPi). In vitro, IL3RA-ADC showed potent and selective antiproliferative efficacy in a panel of IL3RA-expressing AML and HL cell lines. In vivo, IL3RA-ADC improved survival and reduced tumor burden in IL3RA-positive human AML cell line-derived (MOLM-13 and MV-4-11) as well as in patient-derived xenograft (PDX) models (AM7577 and AML11655) in mice. Furthermore, IL3RA-ADC induced complete tumor remission in 12 out of 13 mice in an IL3RA-positive HL cell line-derived xenograft model (HDLM-2). IL3RA-ADC was well-tolerated and showed no signs of thrombocytopenia, neutropenia, or liver toxicity in rats, or in cynomolgus monkeys when dosed up to 20 mg/kg. Overall, the preclinical results support the further development of BAY-943 as an innovative approach for the treatment of IL3RA-positive hematologic malignancies.
RESUMEN
Fucosyltransferase VII (FucTVII) is a very promising drug target for treatment of inflammatory skin diseases. Its activity is required for synthesis of the sialyl-Lewis X glycoepitopes on the E- and P-selectin ligands, necessary for lymphocyte migration into the skin. High-throughput screening (HTS) of large chemical libraries has become the main source of novel chemical entities for the pharmaceutical industry. The screening of very large compound collections requires the use of specialized assay techniques that minimize time and costs. We describe the development of a miniaturized scintillation proximity assay for human FucTVII based on a oligosaccharide acceptor substrate that is identical to the glycosylation of the physiological substrate. In addition to assay development, the assay performance in a HTS campaign is shown. We screened 798,131 compounds from the Schering AG HTS library and identified 233 IC50 hits; 229 hits were FucTVII specific in so far as they did not inhibit either alpha-fucosidase or galactosyltransferase. In addition to screening a drug-like small-molecule collection, we worked on rational approaches to develop inhibitors or glycosidic decoys based on oligosaccharide-substrate analogues. The structure-activity relationship observed thereby is very narrow and shows strict requirements that are consistent with the described substrate specificity of FucTVII.