Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Waste Manag ; 157: 60-68, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36525880

RESUMEN

Hyperthermophilic composting (hTC) is a promising technique for solid waste treatment due to its distinctive microbiomes. However, the assembly process of the hTC microbial community remains unclear. We investigated the assembly process of hTC and explored the underlying drivers influencing community assembly in this work by employing conventional thermophilic composting (cTC) as a comparison group. Our results showed that the two composting treatments have different community assembly processes. Especially for the initial and thermophilic phases, hTC is affected by homogeneous dispersal (48%) and homogeneous selection (44%), respectively, while cTC is controlled by undominant (38%) and homogeneous selection (92%), respectively. Furthermore, random forest models and network results suggested that different factors govern the community assembly in these two composting methods. Specifically, the hTC community increases the stability of the thermophilic community via enhancing the interactions of low-abundance taxa with other operational taxonomic units (OTUs) in community assembly. Our results suggested that the distinctive nature of hTC community assembly may be responsible for its adaptation to extreme environments.


Asunto(s)
Compostaje , Archaea , Ambientes Extremos , Suelo
2.
ISME J ; 17(6): 916-930, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37031344

RESUMEN

While decomposition of organic matter by bacteria plays a major role in nutrient cycling in terrestrial ecosystems, the significance of viruses remains poorly understood. Here we combined metagenomics and metatranscriptomics with temporal sampling to study the significance of mesophilic and thermophilic bacteria and their viruses on nutrient cycling during industrial-scale hyperthermophilic composting (HTC). Our results show that virus-bacteria density dynamics and activity are tightly coupled, where viruses specific to mesophilic and thermophilic bacteria track their host densities, triggering microbial community succession via top-down control during HTC. Moreover, viruses specific to mesophilic bacteria encoded and expressed several auxiliary metabolic genes (AMGs) linked to carbon cycling, impacting nutrient turnover alongside bacteria. Nutrient turnover correlated positively with virus-host ratio, indicative of a positive relationship between ecosystem functioning, viral abundances, and viral activity. These effects were predominantly driven by DNA viruses as most detected RNA viruses were associated with eukaryotes and not associated with nutrient cycling during the thermophilic phase of composting. Our findings suggest that DNA viruses could drive nutrient cycling during HTC by recycling bacterial biomass through cell lysis and by expressing key AMGs. Viruses could hence potentially be used as indicators of microbial ecosystem functioning to optimize productivity of biotechnological and agricultural systems.


Asunto(s)
Compostaje , Microbiota , Virus , Virus/genética , Archaea , Bacterias/genética , Microbiota/genética , Nutrientes
3.
Viruses ; 14(8)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36016331

RESUMEN

The emergence of multidrug-resistant bacterial pathogens poses a serious global health threat. While patient infections by the opportunistic human pathogen Pseudoxanthomonas spp. have been increasingly reported worldwide, no phage associated with this bacterial genus has yet been isolated and reported. In this study, we isolated and characterized the novel phage PW916 to subsequently be used to lyse the multidrug-resistant Pseudoxanthomonas kaohsiungensi which was isolated from soil samples obtained from Chongqing, China. We studied the morphological features, thermal stability, pH stability, optimal multiplicity of infection, and genomic sequence of phage PW916. Transmission electron microscopy revealed the morphology of PW916 and indicated it to belong to the Siphoviridae family, with the morphological characteristics of a rounded head and a long noncontractile tail. The optimal multiplicity of infection of PW916 was 0.1. Moreover, PW916 was found to be stable under a wide range of temperatures (4-60 °C), pH (4-11) as well as treatment with 1% (v/w) chloroform. The genome of PW916 was determined to be a circular double-stranded structure with a length of 47,760 bp, containing 64 open reading frames that encoded functional and structural proteins, while no antibiotic resistance nor virulence factor genes were detected. The genomic sequencing and phylogenetic tree analysis showed that PW916 was a novel phage belonging to the Siphoviridae family that was closely related to the Stenotrophomonas phage. This is the first study to identify a novel phage infecting the multidrug-resistant P. kaohsiungensi and the findings provide insight into the potential application of PW916 in future phage therapies.


Asunto(s)
Bacteriófagos , Siphoviridae , Genoma Viral , Humanos , Filogenia , Xanthomonadaceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA