Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(38): e2304562120, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695890

RESUMEN

High-valent iron-oxo species (FeIV=O) has been a long-sought-after oxygen transfer reagent in biological and catalytic chemistry but suffers from a giant challenge in its gentle and selective synthesis. Herein, we propose a new strategy to synthesize surface FeIV=O (≡FeIV=O) on nanoscale zero-valent iron (nZVI) using chlorite (ClO2-) as the oxidant, which possesses an impressive ≡FeIV=O selectivity of 99%. ≡FeIV=O can be energetically formed from the ferrous (FeII) sites on nZVI through heterolytic Cl-O bond dissociation of ClO2- via a synergistic effect between electron-donating surface ≡FeII and proximal electron-withdrawing H2O, where H2O serves as a hydrogen-bond donor to the terminal O atom of the adsorbed ClO2- thereby prompting the polarization and cleavage of Cl-O bond for the oxidation of ≡FeII toward the final formation of ≡FeIV=O. With methyl phenyl sulfoxide (PMS16O) as the probe molecule, the isotopic labeling experiment manifests an exclusive 18O transfer from Cl18O2- to PMS16O18O mediated by ≡FeIV=18O. We then showcase the versatility of ≡FeIV=O as the oxygen transfer reagent in activating the C-H bond of methane for methanol production and facilitating selective triphenylphosphine oxide synthesis with triphenylphosphine. We believe that this new ≡FeIV=O synthesis strategy possesses great potential to drive oxygen transfer for efficient high-value-added chemical synthesis.

2.
Angew Chem Int Ed Engl ; : e202406046, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771293

RESUMEN

The electrochemical nitrate reduction reaction (NO3RR) is able to convert nitrate (NO3 -) into reusable ammonia (NH3), offering a green treatment and resource utilization strategy of nitrate wastewater and ammonia synthesis. The conversion of NO3 - to NH3 undergoes water dissociation to generate active hydrogen atoms and nitrogen-containing intermediates hydrogenation tandemly. The two relay processes compete for the same active sites, especially under pH-neutral condition, resulting in the suboptimal efficiency and selectivity in the electrosynthesis of NH3 from NO3 -. Herein, we constructed a Cu1-Fe dual-site catalyst by anchoring Cu single atoms on amorphous iron oxide shell of nanoscale zero-valent iron (nZVI) for the electrochemical NO3RR, achieving an impressive NO3 - removal efficiency of 94.8 % and NH3 selectivity of 99.2 % under neutral pH and nitrate concentration of 50 mg L-1 NO3 --N conditions, greatly surpassing the performance of nZVI counterpart. This superior performance can be attributed to the synergistic effect of enhanced NO3 - adsorption on Fe sites and strengthened water activation on single-atom Cu sites, decreasing the energy barrier for the rate-determining step of *NO-to-*NOH. This work develops a novel strategy of fabricating dual-site catalysts to enhance the electrosynthesis of NH3 from NO3 -, and presents an environmentally sustainable approach for neutral nitrate wastewater treatment.

3.
Environ Sci Technol ; 57(36): 13559-13568, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37647604

RESUMEN

Mineral dust serves as a significant source of sulfate aerosols by mediating heterogeneous sulfur dioxide (SO2) oxidation in the atmosphere. Given that a considerable proportion of small organic acids are deposited onto mineral dust via long-range transportation, understanding their impact on atmospheric SO2 transformation and sulfate formation is of great importance. This study investigates the effect of oxalate on heterogeneous SO2 uptake and oxidation phenomenon by in situ FTIR, theoretical calculation, and continuous stream experiments, exploiting hematite (Fe2O3) as an environmental indicator. The results highlight the critical role of naturally deposited oxalate in mononuclear monodentate coordinating surface Fe atoms of Fe2O3 that enhances the activation of O2 for oxidizing SO2 into sulfate. Meanwhile, oxalate increases the hygroscopicity of Fe2O3, facilitating H2O dissociation into reactive hydroxyl groups and further augmenting the SO2 uptake capacity of Fe2O3. More importantly, other conventional iron minerals, such as goethite and magnetite, as well as authentic iron-containing mineral dust, exhibit similar oxalate-promoted sulfate accumulation behaviors. Our findings suggest that oxalate-assisted SO2 oxidation on iron minerals is one of the important contributors to secondary sulfate aerosols, especially during the nighttime with high relative humidity.


Asunto(s)
Hierro , Oxalatos , Sulfatos , Minerales , Oxidación-Reducción , Óxidos de Azufre , Aerosoles
4.
Angew Chem Int Ed Engl ; 62(51): e202314243, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37874325

RESUMEN

BiOCl photocatalysis shows great promise for molecular oxygen activation and NO oxidation, but its selective transformation of NO to immobilized nitrate without toxic NO2 emission is still a great challenge, because of uncontrollable reaction intermediates and pathways. In this study, we demonstrate that the introduction of triangle Cl-Ag1 -Cl sites on a Cl-terminated, (001) facet-exposed BiOCl can selectively promote one-electron activation of reactant molecular oxygen to intermediate superoxide radicals (⋅O2 - ), and also shift the adsorption configuration of product NO3 - from the weak monodentate binding mode to a strong bidentate mode to avoid unfavorable photolysis. By simultaneously tuning intermediates and products, the Cl-Ag1 -Cl-landen BiOCl achieved >90 % NO conversion to favorable NO3 - of high selectivity (>97 %) in 10 min under visible light, with the undesired NO2 concentration below 20 ppb. Both the activity and the selectivity of Cl-Ag1 -Cl sites surpass those of BiOCl surface sites (38 % NO conversion, 67 % NO3 - selectivity) or control O-Ag1 -O sites on a benchmark photocatalyst P25 (67 % NO conversion and 87 % NO3 - selectivity). This study develops new single-atom sites for the performance enhancement of semiconductor photocatalysts, and also provides a facile pathway to manipulate the reactive oxygen species production for efficient pollutant removal.

5.
Environ Sci Technol ; 56(15): 10945-10953, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35830297

RESUMEN

Heavy metals chelated with coexisting organic ligands in wastewater impose severe risks to public health and the ambient ecosystem but are also valuable metal resources. For sustainable development goals, the treatment of heavy metal complexes wastewater requires simultaneous metal-organic bond destruction and metal resource recovery. In this study, we demonstrated that a neutral pH electro-Fenton (EF) system, which was composed of an iron anode, carbon cloth cathode, and sodium tetrapolyphosphate electrolyte (Na6TPP), could induce a successive single-electron activation pathway of molecular oxygen due to the formation of Fe(II)-TPP complexes. The boosted •OH generation in the Na6TPP-EF process could decomplex 99.9% of copper ethylene diamine tetraacetate within 8 h; meanwhile, the released Cu ions were in situ deposited on the carbon cloth cathode in the form of Cu nanoparticles with a high energy efficiency of 2.45 g kWh-1. Impressively, the recovered Cu nanoparticles were of purity over 95.0%. More importantly, this neutral EF strategy could realize the simultaneous removal of Cu, Ni, and Cr complexes from real electroplating effluents. This study provides a promising neutral EF system for simultaneous heavy metal complexes wastewater treatment and resource recovery and sheds light on the importance of molecular oxygen activation in the field of pollutant control.


Asunto(s)
Complejos de Coordinación , Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Carbono , Ecosistema , Metales Pesados/química , Oxidación-Reducción , Oxígeno , Aguas Residuales/química , Contaminantes Químicos del Agua/química
6.
Environ Sci Technol ; 56(20): 14478-14486, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36173086

RESUMEN

The photocatalytic O2 activation for pollutant removal highly depends on the controlled generation of desired reactive oxygen species (ROS). Herein, we demonstrate that the robust excitonic effect of BiOBr nanosheets, which is prototypical for singlet oxygen (1O2) production to partially oxidize NO into a more toxic intermediate NO2, can be weakened by surface boronizing via inducing a staggered band alignment from the surface to the bulk and simultaneously generating more surface oxygen vacancy (VO). The staggered band alignment destabilizes excitons and facilitates their dissociation into charge carriers, while surface VO traps electrons and efficiently activates O2 into a superoxide radical (•O2-) via a one-electron-transfer pathway. Different from 1O2, •O2- enables the complete oxidation of NO into nitrate with high selectivity that is more desirable for safe indoor NO remediation under visible light irradiation. This study provides a facile excitonic effect manipulating method for layered two-dimensional photocatalysts and sheds light on the importance of managing ROS production for efficient pollutant removal.


Asunto(s)
Contaminantes Ambientales , Nitratos , Bismuto , Catálisis , Luz , Dióxido de Nitrógeno , Oxígeno , Especies Reactivas de Oxígeno , Oxígeno Singlete , Superóxidos
7.
World J Microbiol Biotechnol ; 38(3): 37, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35018528

RESUMEN

Thiamphenicol (TAP) is an amphenicol antibiotic, which has a broad-spectrum inhibitory effect on both gram-positive and gram-negative bacteria. Since it is widely used in animals and aquaculture, its residues in environment may bring potential risk for human health and ecosystems. While TAP can be removed through conventional physical or chemical methods, its bioremediation using microorganisms is less studied. Here, we report the removal of TAP by a bacterial strain, Aeromonas hydrophila HS01, which can remove more than 90.0% of TAP in a living cell-dependent manner. Our results indicated that its removal efficiency can be greatly affected by the growth condition. Proteomics studies revealed a number of differentially expressed proteins of HS01 in the presence of TAP, which may play critical roles in the transportation and degradation of TAP. All these results indicate bacterial strain A. hydrophila HS01 is a new microbial resource for efficiently removing TAP, and may shed new insights in developing bioremediation approaches for TAP pollution.


Asunto(s)
Aeromonas hydrophila/metabolismo , Antibacterianos/metabolismo , Tianfenicol/metabolismo , Animales , Antibacterianos/farmacología , Acuicultura , Biodegradación Ambiental , Ecosistema , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Proteómica/métodos , Tianfenicol/farmacología
8.
Angew Chem Int Ed Engl ; 60(31): 17115-17122, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-33991384

RESUMEN

Removal of non-biodegradable heavy metals has been the top priority in wastewater treatment and the development of green technologies remains a significant challenge. We demonstrate that phosphorylated nanoscale zero-valent iron (nZVI) is promising for removal of heavy metals (NiII , CuII , CrVI , HgII ) via a boosted Kirkendall effect. Phosphorylation confines tensile hoop stress on the nZVI particles and "breaks" the structurally dense spherical nZVI to produce numerous radial nanocracks. Exemplified by NiII removal, the radial nanocracks favor the facile inward diffusion of NiII and the rapid outward transport of electrons and ferrous ions through the oxide shell for surface (NiII /electron) and boundary (NiII /Fe0 ) galvanic exchange. Accompanied by a pronounced hollowing phenomenon, phosphorylated nZVI can instantly reduce and immobilize NiII throughout the oxide shell with a high capacity (258 mg Ni g-1 Fe). For real electroplating factory wastewater treatment, this novel nZVI performs simultaneous NiII and CuII removal, producing effluent of stable quality that meets local discharge regulations.


Asunto(s)
Compuestos de Hierro/química , Metales Pesados/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Compuestos de Hierro/síntesis química , Metales Pesados/química , Tamaño de la Partícula , Fosforilación , Contaminantes Químicos del Agua/química , Purificación del Agua
9.
J Am Chem Soc ; 142(41): 17403-17412, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32948092

RESUMEN

Optimizing kinetic barriers of ammonia synthesis to reduce the energy intensity has recently attracted significant research interest. The motivation for the research is to discover means by which activation barriers of N2 dissociation and NHz (z = 1-2, surface intermediates) destabilization can be reduced simultaneously, that is, breaking the "scaling relationship". However, by far only a single success has been reported in 2016 based on the discovery of a strong-weak N-bonding pair: transition metals (nitrides)-LiH. Described herein is a second example that is counterintuitively founded upon a strong-strong N-bonding pair unveiled in a bifunctional nanoscale catalyst TiO2-xHy/Fe (where 0.02 ≤ x ≤ 0.03 and 0 < y < 0.03), in which hydrogen spillover (H) from Fe to cascade oxygen vacancies (OV-OV) results in the trapped form of OV-H on the TiO2-xHy component. The Fe component thus enables facile activation of N2, while the OV-H in TiO2-xHy hydrogenates the N or NHz to NH3 easily.

10.
Environ Sci Technol ; 53(14): 8333-8341, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31241331

RESUMEN

In this study, we report that liquid nitrogen treatment is a promising zero-valent iron activation method that does not remove the iron oxide shell; this can improve the apparent Cr(VI) removal rate constant of zero-valent iron by about 4-120 times, depending on the particle sizes and the suppliers of zero-valent iron. It was found that liquid nitrogen, with its low temperature of 77 K, could crack the iron oxide shell of zero-valent iron to produce abundant fractures because of the different thermal expansion coefficients of iron oxide and iron. These fractures provided suitable mass transfer channels for the inward transfer of water/oxygen molecules to the iron core and the subsequent in situ generation of Fe(II) for the reduction of Cr(VI) to Cr(III). More importantly, systematic characterizations confirmed the generation of an Fe(III)/Cr(III)/Cr(VI) composite on the surface of zero-valent iron during the removal, suggesting its environmental benignancy. This study provides a novel physical zero-valent iron activation method, sheds light on the importance of the iron oxide shell of zero-valent iron on Cr(VI) removal, and clarifies the intrinsic Cr(VI) removal mechanism of zero-valent iron.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Cromo , Compuestos Férricos , Nitrógeno
11.
Environ Sci Technol ; 53(11): 6444-6453, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31050293

RESUMEN

Semiconductor photocatalytic technology has great potential for the removal of dilute gaseous NO in indoor and outdoor atmospheres but suffers from unsatisfactory NO-removal selectivity due to undesirable NO2 byproduct generation. In this study, we demonstrate that the 99% selectivity of photocatalytic NO oxidation toward nitrate can be achieved over blue TiO2 bearing oxygen vacancies (OVs) under visible-light irradiation. First-principles density functional theory calculation and experimental results suggested that the OVs of blue TiO2 with localized electrons could facilitate the molecular oxygen activation through single-electron pathways to generate ·O2- and simultaneously promote the photogenerated hole annihilation. The generated ·O2- directly converted NO to nitrate, while the hole annihilation inhibited the side-reaction between holes and NO to avoid toxic NO2 byproduct formation, resulting in the highly selective removal of NO. This study reveals the dual functions of OVs in defective photocatalysts and also provides fundamental guidance for the selective purification of NO with photocatalytic technology.


Asunto(s)
Oxígeno , Titanio , Luz , Nitratos , Oxidación-Reducción
12.
Environ Sci Technol ; 53(12): 6964-6971, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31084027

RESUMEN

Intelligent defect engineering to harness surface molecular processes is at the core of selective oxidation catalysis. Here, we demonstrate that the two-electron-trapped oxygen vacancy (VO) of BiOCl, a prototypical F center (VŐ''), is a superb site to confine O2 toward efficient and selective NO oxidation to nitrate. Stimulated by solar light, VŐ'' accomplishes NO oxidation through a two-electron charging (VŐ'' + O2 → VŐ''-O22-) and subsequent one-electron decharging process (VŐ''-O22- + NO → VO-NO3- + e-). The back-donated electron is retrapped by VO to produce a new single-electron-trapped VO (VO'), simultaneously triggering a second round of NO oxidation (VO'-O2 + NO → VO-NO3-). This unprecedented interfacial charging-decharging scheme alters the peroxide-associated NO oxidation selectivity from NO2 to NO3- with a high efficiency and thus hold great promise for the treatment of risky NO x species in indoor air.


Asunto(s)
Nitratos , Oxígeno , Catálisis , Oxidación-Reducción , Luz Solar
13.
Environ Sci Technol ; 53(6): 3208-3216, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30793590

RESUMEN

Hydroxylation of atrazine to nontoxic hydroxyatrazine is generally considered an efficient detoxification method to remediate atrazine-contaminated soil and water. However, previous studies suggested that hydroxylation was not the dominant pathway for atrazine degradation in the hydroxyl radical-generating systems such as Fenton reaction, ozonation and UV/H2O2. Herein we report that the addition of sodium thiosulfate can realize rapid hydroxylation of atrazine to hydroxyatrazine at pH ≤ 4 under room temperature. High resolution mass spectra and isotope experiments results revealed that the hydroxylation of atrazine was involved with nucleophilic substitution and subsequent hydrolysis reaction as follows. HS2O3-, as a species of thiosulfate only at pH ≤ 4, first attacked C atom connecting to chlorine of atrazine to dechlorinate atrazine and produce C8H14N5S2O3-. Subsequently, the S-S bond of C8H14N5S2O3- was cleaved easily to form SO3 and C8H14N5S-. Next, C8H14N5S- was hydrolyzed to generate hydroxyatrazine and H2S. Finally, the comproportionation of SO3 and H2S in situ produced S0 during hydroxylation of atrazine with thiosulfate. This study clarifies the importance of degradation pathway on the removal of pollutants, and also provides a nonoxidative strategy for atrazine detoxification in seconds.


Asunto(s)
Atrazina , Herbicidas , Peróxido de Hidrógeno , Hidroxilación , Tiosulfatos
14.
Clin Lab ; 65(6)2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31232026

RESUMEN

BACKGROUND: This study was designed to evaluate the effects of micro-RNA-16 (miR-16)-regulated expression of myeloblastosis oncogene (MYB) on the differentiation of acute leukemia cells, the expressions of miR-16 and MYB mRNA, and protein in differently differentiated leukemia cells were detected by real-time PCR and western blot. METHODS: 1,25-Dihydroxyvitamin D3 (1,25 D3) induced monocytic differentiation of HL60 cells, and the resulting changes in miR-16 and MYB expressions were detected. Morphology of the cells induced by 1,25 D3, after being transfection with miR-16 mimics, was observed by Wright-Giemsa staining. The expression of mononuclear cell surface marker CD14 was detected by flow cytometry. RESULTS: Minimum miR-16 was expressed in early-differentiation KG-1a cells, while late-differentiation U937 and THP-1 cells had higher expressions (p < 0.01). The expressions of MYB changed oppositely. During the monocytic differentiation of HL60 cells, miR-16 expression showed a time-dependent increase, but MYB expression gradually decreased. Overexpression of miR-16 in HL60 cells promoted 1,25 D3-induced morphological changes and CD14 expression (p < 0.05). CONCLUSIONS: MR-16 facilitated the monocytic differentiation of leukemia HL60 cells by negatively regulating MYB expression.


Asunto(s)
Diferenciación Celular/genética , Leucemia Mieloide/genética , MicroARNs/genética , Proteínas Oncogénicas v-myb/genética , Enfermedad Aguda , Calcitriol/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Perfilación de la Expresión Génica , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Células HL-60 , Humanos , Células K562 , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Proteínas Oncogénicas v-myb/metabolismo , Células THP-1 , Células U937
15.
Environ Sci Technol ; 52(15): 8659-8665, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29962202

RESUMEN

It is of a great challenge to seek for semiconductor photocatalysts with prominent reactivity to remove kinetically inert dilute NO without NO2 emission. In this study, complete visible light NO oxidation mediated by O2 is achieved over a defect-engineered BiOCl with selectivity exceeding 99%. Well-designed oxygen vacancies on the prototypical (001) surface of BiOCl favored the possible formation of geometric-favorable superoxide radicals (•O2-) in a side-on bridging mode under ambient condition, which thermodynamically suppressed the terminal end-on •O2- associated NO2 emission in case of higher temperatures, and thus selectively oxidized NO to nitrate. These findings can help us to understand the intriguing surface chemistry of photocatalytic NO oxidation and design highly efficient NO x removal systems.


Asunto(s)
Oxígeno , Superóxidos , Catálisis , Luz , Oxidación-Reducción
16.
Environ Sci Technol ; 52(21): 12656-12666, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30299924

RESUMEN

Converting sewage sludge into functional environmental materials has become an attractive sewage sludge disposal route. In this study, we synthesize a sewage sludge-based material via a facile one-pot hydrothermal carbonization method and construct a visible light molecular oxygen activation system with hydrothermally carbonized sewage sludge (HTC-S) and oxalate to degrade various organic pollutants. It was found that iron species of HTC-S could chelate with oxalate to generate H2O2 via molecular oxygen activation under visible light, and also promote the H2O2 decomposition to produce •OH for the fast organic pollutants degradation. Taking sulfadimidine as the example, the apparent degradation rate of HTC-S/oxalate system was almost 5-20 times that of iron oxides/oxalate system. This outstanding degradation performance was attributed to the presence of iron-containing clay minerals in HTC-S, as confirmed by X-ray diffraction measurements and Mössbauer spectrometry. In the oxalate solution, these iron-containing clay minerals could be excited more easily than common iron oxides under visible light, because the silicon species strongly interacted with iron species in HTC-S to form Fe-O-Si bond, which lowered the excitation energy of Fe-oxalate complex. This work provides an alternative sewage sludge conversion pathway and also sheds light on the environmental remediation applications of sewage sludge-based materials.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Oxígeno , Aguas del Alcantarillado
17.
Angew Chem Int Ed Engl ; 57(1): 122-138, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-28635079

RESUMEN

Semiconductor photocatalysis is a trustworthy approach to harvest clean solar light for energy conversions, while state-of-the-art catalytic efficiencies are unsatisfactory because of the finite light response and/or recombination of robust charge carriers. Along with the development of modern material characterization techniques and electronic-structure computations, oxygen vacancies (OVs) on the surface of real photocatalysts, even in infinitesimal concentration, are found to play a more decisive role in determining the kinetics, energetics, and mechanisms of photocatalytic reactions. This Review endeavors to clarify the inherent functionality of OVs in photocatalysis at the surface molecular level using 2D BiOCl as the platform. Structure sensitivity of OVs on reactivity and selectivity of photocatalytic reactions is intensely discussed via confining OVs onto prototypical BiOCl surfaces of different structures. The critical understanding of OVs chemistry can help consolidate and advance the fundamental theories of photocatalysis, and also offer new perspectives and guidelines for the rational design of catalysts with satisfactory performance.

18.
Environ Sci Technol ; 51(14): 8101-8109, 2017 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-28631472

RESUMEN

Phosphate ions widely exist in the environment. Previous studies revealed that the adsorption of phosphate ions on nanoscale zerovalent iron would generate a passivating oxide shell to block reactive sites and thus decrease the direct pollutant reduction reactivity of zerovalent iron. Given that molecular oxygen activation process is different from direct pollutant reduction with nanoscale zerovalent iron, it is still unclear how phosphate ions will affect molecular oxygen activation and reactive oxygen species generation with nanoscale zerovalent iron. In this study, we systematically studied the effect of phosphate ions on molecular oxygen activation with Fe@Fe2O3 nanowires, a special nanoscale zerovalent iron, taking advantages of rotating ring disk electrochemical analysis. It was interesting to find that the oxygen reduction pathway on Fe@Fe2O3 nanowires was gradually shifted from a four-electron reduction pathway to a sequential one-electron reduction one, along with increasing the phosphate ions concentration from 0 to 10 mmol·L-1. This oxygen reduction pathway change greatly enhanced the molecular oxygen activation and reactive oxygen species generation performances of Fe@Fe2O3 nanowires, and thus increased their aerobic 4-chlorophenol degradation rate by 10 times. These findings shed insight into the possible roles of widely existed phosphate ions in molecular oxygen activation and organic pollutants degradation with nanoscale zerovalent iron.


Asunto(s)
Clorofenoles/química , Compuestos Férricos/química , Nanocables , Especies Reactivas de Oxígeno , Hierro , Oxidación-Reducción , Oxígeno , Fosfatos
19.
Environ Sci Technol ; 51(19): 11278-11287, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28891638

RESUMEN

Biochar, mainly including pyrochar produced via pyrolysis of biomass at moderate temperatures of 350-700 °C and hydrochar formed by hydrothermal carbonization in a range of 150-350 °C, has received increasing attention because of its significant environmental impacts. It is known that pyrochar can generate reactive oxygen species even in the dark owing to the presence of persistent free radicals, but hydrochar is far less studied. In this study, we systematically investigate the photochemistry of hydrochar and check its effects on the sulfadimidine degradation. Different from pyrochar derived from the same biomass, hydrochar could generate much more H2O2 and •OH under daylight irradiation, which could enhance the sulfadimidine degradation rate six times more than that found in the dark. Raman spectroscopy, Fourier transform infrared spectroscopy, electron paramagnetic resonance, and X-ray photoelectron spectroscopy were employed to elucidate this interesting phenomenon. Characterization results revealed that the higher reactive oxygen species generation ability of hydrochar under solar light irradiation was attributed to its abundant photoactive surface oxygenated functional groups. This study clarifies the differences of pyrochar and hydrochar on organic pollutant degradation, and also sheds light on environmental effects of hydrochar.


Asunto(s)
Especies Reactivas de Oxígeno , Sulfametazina , Biomasa , Peróxido de Hidrógeno , Temperatura
20.
Environ Sci Technol ; 51(9): 5118-5126, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28358480

RESUMEN

In this study, we construct a surface Fenton system with hydroxylamine (NH2OH), goethite (α-FeOOH), and H2O2 (α-FeOOH-HA/H2O2) to degrade various organic pollutants including dyes (methyl orange, methylene blue, and rhodamine B), pesticides (pentachlorophenol, alachlor, and atrazine), and antibiotics (tetracycline, chloramphenicol, and lincomycin) at pH 5.0. In this surface Fenton system, the presence of NH2OH could greatly promote the H2O2 decomposition on the α-FeOOH surface to produce ·OH without releasing any detectable iron ions during the alachlor degradation, which was different from some previously reported heterogeneous Fenton counterparts. Moreover, the ·OH generation rate constant of this surface Fenton system was 102-104 times those of previous heterogeneous Fenton processes. The interaction between α-FeOOH and NH2OH was investigated with using attenuated total reflectance Fourier transform infrared spectroscopy and density functional theory calculations. The effective degradation of organic pollutants in this surface Fenton system was ascribed to the efficient Fe(III)/Fe(II) cycle on the α-FeOOH surface promoted by NH2OH, which was confirmed by X-ray photoelectron spectroscopy analysis. The degradation intermediates and mineralization of alachlor in this surface Fenton system were then systematically investigated using total organic carbon and ion chromatography, liquid chromatography-mass spectrometry, and gas chromatography-mass spectrometry. This study offers a new strategy to degrade organic pollutants and also sheds light on the environmental effects of goethite.


Asunto(s)
Compuestos Férricos/química , Peróxido de Hidrógeno/química , Hidroxilamina , Hidroxilaminas , Hierro/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA