Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 23(39): 22305-22312, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34590649

RESUMEN

High-temperature order-disorder phase transitions play an important role in determining the structure and physical and chemical properties of non-stoichiometric transition metal carbides. Due to the large number of possible carbon vacancy arrangements, it is difficult to study these systems with first-principles calculations. Here, we construct a simple atomistic potential capable of accurately reproducing the energetics of the carbon vacancy arrangements in cubic Mo2C and Ti2C obtained from density functional theory calculations. We show that this potential can be applied to correctly predict the transition temperatures between the ordered and disordered states in Monte Carlo simulations on large supercells and reveal the extend of local order in the disordered phases of Mo2C and Ti2C that show interesting physical and chemical properties. We find that even the high-temperature disordered phase exhibit a relatively high degree of local order as indicated by the relatively small change in the root mean square number of C atom neighbours of Mo/Ti compared to the ordered phase (from 3.0 to 3.1-3.2). This atomistic potential enables the study of how the structure of these carbides can be tuned through the synthesis temperature to control the properties of carbide materials that are related to the degree of disorder in the system such as catalytic activity and electrical conductivity and play an important role in applications of these carbides. Fundamentally, the successful modelling of these carbides suggests that despite the presence of metallic, covalent and ionic interactions, bonding in carbides can be modelled by simple and physically intuitive interatomic potentials.

2.
Phys Chem Chem Phys ; 23(47): 26674-26679, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34668906

RESUMEN

Fe-N-C electrocatalysts hold a great promise for Pt-free energy conversion, driving the electrocatalysis of oxygen reduction and evolution, oxidation of nitrogen fuels, and reduction of N2, CO2, and NOx. Nevertheless, the catalytic role of iron carbide, a component of nearly every pyrolytic Fe-N-C material, is at the focus of a heated controversy. We now resolve the debate by examining a broad range of Fe3C sites, spanning across many typical size distributions and carbon environments. Removing Fe3C selectively by a non-oxidizing acid reveals its inactivity towards two representative reactions in alkaline media, oxygen reduction and hydrazine oxidation. The activity is assigned to other pre-existing sites, most probably Fe-Nx. DFT calculations prove that the Fe3C surface binds O and N intermediates too strongly to be catalytic. By settling the argument on the catalytic role of Fe3C in alkaline electrocatalysis, we hope to spur innovation in this critical field.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA