Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 92(13): 9348-9355, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32522000

RESUMEN

Cytometry of Reaction Rate Constant (CRRC) uses time-lapse fluorescence microscopy to measure a rate constant of a catalytic reaction in individual cells and, thus, facilitate accurate size determination for cell subpopulations with distinct efficiencies of this reaction. Reliable CRRC requires uniform exposure of cells to the reaction substrate followed by their uniform imaging, which in turn, requires that a tissue sample be disintegrated into a suspension of dispersed cells, and these cells settle on the support surface before being analyzed by CRRC. We call such cells "dispersed-settled" to distinguish them from cells cultured as a monolayer. Studies of the dispersed-settled cells can be tissue-relevant only if the cells maintain their 3D tissue state during the multi-hour CRRC procedure. Here, we propose an approach for assessing tissue relevance of the CRRC-based analysis of the dispersed-settled cells. Our approach utilizes cultured multicellular spheroids as a 3D cell model and cultured cell monolayers as a 2D cell model. The CRRC results of the dispersed-settled cells derived from spheroids are compared to those of spheroids and monolayers in order to find if the dispersed-settled cells are representative of the spheroids. To demonstrate its practical use, we applied this approach to a cellular reaction of multidrug resistance (MDR) transport, which was followed by extrusion of a fluorescent substrate from the cells. The approach proved to be reliable and revealed long-term maintenance of MDR transport in the dispersed-settled cells obtained from cultured ovarian cancer spheroids. Accordingly, CRRC can be used to determine accurately the size of a cell subpopulation with an elevated level of MDR transport in tumor samples, which makes CRRC a suitable method for the development of MDR-based predictors of chemoresistance. The proposed spheroid-based approach for validation of CRRC is applicable to other types of cellular reactions and, thus, will be an indispensable tool for transforming CRRC from an experimental technique into a practical analytical tool.


Asunto(s)
Microscopía Fluorescente/métodos , Esferoides Celulares/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Fluoresceína/química , Humanos , Cinética , Esferoides Celulares/citología , Esferoides Celulares/patología , Imagen de Lapso de Tiempo
2.
Anal Chem ; 91(6): 4186-4194, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30829484

RESUMEN

Robust and accurate analysis of cell-population heterogeneity is challenging but required in many areas of biology and medicine. In particular, it is pivotal to the development of reliable cancer biomarkers. Here, we prove that cytometry of reaction rate constant (CRRC) can facilitate such analysis when the kinetic mechanism of a reaction associated with the heterogeneity is known. In CRRC, the cells are loaded with a reaction substrate, and its conversion into a product is followed by time-lapse fluorescence microscopy at the single-cell level. A reaction rate constant is determined for every cell, and a kinetic histogram "number of cells versus the rate constant" is used to determine quantitative parameters of reaction-based cell-population heterogeneity. Such parameters include, for example, the number and sizes of subpopulations. In this work, we applied CRRC to a reaction of substrate extrusion from cells by ATP-binding cassette (ABC) transporters. This reaction is viewed as a potential basis for predictive biomarkers of chemoresistance in cancer. CRRC proved to be robust (insensitive to variations in experimental settings) and accurate for finding quantitative parameters of cell-population heterogeneity. In contrast, a typical nonkinetic analysis, performed on the same data sets, proved to be both nonrobust and inaccurate. Our results suggest that CRRC can potentially facilitate the development of reliable cancer biomarkers on the basis of quantitative parameters of cell-population heterogeneity. A plausible implementation scenario of CRRC-based development, validation, and clinical use of a predictor of ovarian cancer chemoresistance to its frontline therapy is presented.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Citometría de Flujo/métodos , Microscopía Fluorescente/métodos , Neoplasias Ováricas/patología , Resistencia a Múltiples Medicamentos , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Células Tumorales Cultivadas
3.
J Cell Biochem ; 118(1): 154-162, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27283126

RESUMEN

In functional cytometric studies, cultured cells are exposed to effectors (e.g., drugs), and the heterogeneity of cell responses are studied using cytometry techniques (e.g., image cytometry). Such studies are difficult to perform on 3D cell cultures. A solution is to disperse 3D clusters and transfer the cells to the 2D state before applying effectors and using cytometry. This approach requires that the lifetime of the 3D phenotype be longer than the duration of the experiment. Here we studied the dynamics of phenotype transformation from 3D to 2D and searched for means of slowing this transformation down in dispersed spheroids of MCF7 cells. We found three functional biomarkers of the 3D phenotype in MCF7 cell spheroids that are absent in the 2D cell culture: (i) the presence of a subpopulation with an elevated drug-expelling capacity; (ii) the presence of a subpopulation with an elevated cytoprotective capacity; and (iii) the accumulation of cells in the G1 phase of the cell cycle. Monitoring these biomarkers in cells transferred from the 3D state to the 2D state revealed their gradual extinction. We found that the combined application of an elevated cell density and thiol-containing medium supplements increased the lifetime of the 3D phenotype by several fold to as long as 96 h. Our results suggest that extending the lifetime of the 3D phenotype in the cells transferred from the 3D state to the 2D state can facilitate detailed functional cytometric studies, such as measurements of population heterogeneity of cytotoxicity, chemosensitivity, and radiosensitivity. J. Cell. Biochem. 118: 154-162, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Fase G1/fisiología , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Técnicas de Cultivo de Célula/métodos , Femenino , Humanos , Células MCF-7
4.
J Cell Biochem ; 117(1): 59-65, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26054050

RESUMEN

Inhibition of metabolic features which distinguish cancer cells from their non-malignant counterparts is a promising approach to cancer treatment. Energy support for drug extrusion in multidrug resistance (MDR) is a potential target for metabolic inhibition. Two major sources of ATP-based metabolic energy are partial (glycolysis) and complete (mitochondrial oxidative phosphorylation) oxidation of metabolic fuels. In cancer cells, the balance between them tends to be shifted toward glycolysis; this shift is considered to be characteristic of the cancer metabolic phenotype. Numerous earlier studies, conducted with cells cultured in a monolayer (2-D model), suggested inhibition of glycolytic ATP production as an efficient tool to suppress MDR in cancer cells. Yet, more recent work challenged the appropriateness of the 2-D model for such studies and suggested that a more clinically relevant approach would utilize a more advanced cellular model such as a 3-D model. Here, we show that the transition from the 2-D model (cultured monolayer) to a 3-D model (cultured spheroids) introduces essential changes into the concept of energetic suppression of MDR. The 3-D cell organization leads to the formation of a discrete cell subpopulation (not formed in the 2-D model) with elevated MDR transport capacity. This subpopulation has a specific metabolic phenotype (mixed glycolytic/oxidative MDR support) different from that of cells cultured in the 2-D model. Finally, the shift to the oxidative phenotype becomes greater when the spheroids are grown under conditions of lactic acidosis that are typical for solid tumors. The potential clinical significance of these findings is discussed.


Asunto(s)
Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Adenosina Trifosfato/metabolismo , Supervivencia Celular/fisiología , Citometría de Flujo , Humanos , Células MCF-7 , Modelos Biológicos
5.
Nature ; 458(7239): 780-3, 2009 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-19194462

RESUMEN

The metabolism of oxygen, although central to life, produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature progeny, and that these differences are critical for maintaining stem cell function. We proposed that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Notably, subsets of CSCs in some human and murine breast tumours contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing-radiation-induced cell killing, CSCs in these tumours develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacological depletion of ROS scavengers in CSCs markedly decreases their clonogenicity and results in radiosensitization. These results indicate that, similar to normal tissue stem cells, subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny, which may contribute to tumour radioresistance.


Asunto(s)
Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de la radiación , Tolerancia a Radiación/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Neoplasias de la Mama/fisiopatología , Células Cultivadas , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Femenino , Expresión Génica , Humanos , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Ratones , Ratones Endogámicos C57BL
6.
Proc Natl Acad Sci U S A ; 108(16): 6468-73, 2011 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-21451132

RESUMEN

The cancer stem cell (CSC) model proposes that tumors have a hierarchical organization in which only some cells indefinitely self-renew and thereby sustain tumor growth. In addition, the CSC model requires that tumor-initiating cells (TICs) be prospectively isolatable on the basis of their phenotype. Previous studies have suggested that serous ovarian cancer (SOC) conforms to the CSC model, but these used arguably nonfidelitous immortalized cell lines, cultured primary cells, or passaged xenografts as the source of tumor cells. We developed a robust assay for quantifying TICs from primary SOC. Using this assay, we find that TICs are rare when assayed in either NOD/SCID or NOD/SCID/IL2Rγ(-/-) (NSG) mice. TIC frequency (TICf) varies substantially between patients, although it is similar in primary ovarian masses and omental metastases, suggesting that TICf is an intrinsic property of ovarian tumors. CD133 marks all TICs from several primary SOC cases. However, in other cases, substantial TIC activity is found in both the CD133(+) and CD133(-) fractions, whereas still other cases have exclusively CD133(-) TICs. Furthermore, the TIC phenotype can change in xenografts: primary tumors in which all TICs are CD133(+) can give rise to xenografts that contain substantial numbers of CD133(-) TICs. Our results highlight the need for quantitative rigor in the evaluation of TICs and for caution when using passaged xenografts for such studies. Furthermore, although our data suggest that SOC conforms to the CSC hypothesis, the heterogeneity of the TIC phenotype may complicate its clinical application.


Asunto(s)
Modelos Biológicos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Células Madre Neoplásicas/trasplante , Neoplasias Ováricas/genética , Trasplante Heterólogo
7.
Lab Invest ; 93(4): 397-407, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23399854

RESUMEN

There are very few xenograft models available for the study of esophageal (E) and gastro-esophageal junction (GEJ) cancer. Using a NOD/SCID model, we implanted 90 primary E and GEJ tumors resected from patients and six endoscopic biopsy specimens. Of 69 resected tumors with histologically confirmed viable adenocarcinoma or squamous cell carcinoma, 22 (32%) was engrafted. One of 11 tumors, considered to have had a complete pathological response to neo-adjuvant chemo-radiation, also engrafted. Of the 23 patients whose tumors were engrafted, 65% were male; 30% were early stage while 70% were late stage; 22% received neo-adjuvant chemo-radiation; 61% were GEJ cancers. Engraftment occurred in 18/54 (33%) adenocarcinomas and 5/16 (31%) squamous cell carcinomas. Small endoscopic biopsy tissue had a 50% (3/6) engraftment rate. Of the factors analyzed, pretreatment with chemo-radiation and well/moderate differentiation showed significantly lower correlation with engraftment (P<0.05). In the subset of patients who did not receive neo-adjuvant chemo-radiation, 18/41 (44%) engrafted compared with those with pretreatment where 5/29 (17%, P=0.02) engrafted. Primary xenograft lines may be continued through 4-12 passages. Xenografts maintained similar histology and morphological characteristics with only minor variations even after multiple passaging in most instances.


Asunto(s)
Adenocarcinoma/patología , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/patología , Neoplasias Experimentales/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Supervivencia de Injerto , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Trasplante de Neoplasias
8.
Cancers (Basel) ; 14(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35205707

RESUMEN

The major cause of cancer-related deaths can be attributed to the metastatic spread of tumor cells-a dynamic and complex multi-step process beginning with tumor cells acquiring an invasive phenotype to allow them to travel through the blood and lymphatic vessels to ultimately seed at a secondary site. Over the years, various in vitro models have been used to characterize specific steps in the cascade to collectively begin providing a clearer picture of the puzzle of metastasis. With the discovery of the TME's supporting role in activating tumor cell invasion and metastasis, these models have evolved in parallel to accommodate features of the TME and to observe its interactions with tumor cells. In particular, CAFs that reside in reactive tumor stroma have been shown to play a substantial pro-invasive role through their matrix-modifying functions; accordingly, this warranted further investigation with the development and use of invasion assays that could include these stromal cells. This review explores the growing toolbox of assays used to study tumor cell invasion, from the simple beginnings of a tumor cell and extracellular matrix set-up to the advent of models that aim to more closely recapitulate the interplay between tumor cells, CAFs and the extracellular matrix. These models will prove to be invaluable tools to help tease out the intricacies of tumor cell invasion.

9.
Mol Clin Oncol ; 15(2): 161, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34295468

RESUMEN

A primary reason for chemotherapy failure is chemoresistance, which is driven by various mechanisms. Multi-drug resistance (MDR) is one such mechanism that is responsible for drug extrusion from the intracellular space. MDR can be intrinsic and thus, may pre-exist the first application of chemotherapy. However, MDR may also be acquired during tumor exposure to chemotherapeutic agents. To understand whether cell clustering can influence intrinsic and acquired MDR, the present study assessed cultured monolayers (representing individual cells) and spheroids (representing clusters) formed by cisplatin-naïve (intrinsic MDR) and cisplatin-exposed (acquired MDR) lines of ovarian cancer A2780 cells by determining the cytometry of reaction rate constant (CRRC). MDR efflux was characterized using accurate and robust cell number vs. MDR efflux rate constant (k MDR) histograms. Both cisplatin-naïve and cisplatin-exposed monolayer cells presented unimodal histograms; the histogram of cisplatin-exposed cells was shifted towards a higher k MDR value suggesting greater MDR activity. Spheroids of cisplatin-naïve cells presented a bimodal histogram indicating the presence of two subpopulations with different MDR activity. In contrast, spheroids of cisplatin-exposed cells presented a unimodal histogram qualitatively similar to that of the monolayers of cisplatin-exposed cells but with a moderate shift towards greater MDR activity. A flow-cytometry assessment of multidrug resistance-associated protein 1 transporter levels in monolayers and dissociated spheroids revealed distributions similar to those of k MDR, thus, suggesting a plausible molecular mechanism for the observed differences in MDR activity. The observed greater effect of cell clustering on intrinsic rather than in acquired MDR can help guide the development of new therapeutic strategies targeting clusters of circulating tumor cells.

10.
J Proteome Res ; 9(11): 5757-69, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20873772

RESUMEN

In search of thyroid cancer biomarkers, proteins secreted by thyroid cancer cell lines, papillary-derived TPC-1 and anaplastic-derived CAL62, were analyzed using liquid chromatography-tandem mass spectrometry. Of 46 high-confidence identifications, 6 proteins were considered for verification in thyroid cancer patients' tissue and blood. The localization of two proteins, nucleolin and prothymosin-α (PTMA), was confirmed in TPC-1 and CAL62 cells by confocal microscopy and immunohistochemically in xenografts of TPC-1 cells in NOD/SCID/γ mice and human thyroid cancers (48 tissues). Increased nuclear and cytoplasmic expression of PTMA was observed in anaplastic compared to papillary and poorly differentiated carcinomas. Nuclear expression of nucleolin was observed in all subtypes of thyroid carcinomas, along with faint cytoplasmic expression in anaplastic cancers. Importantly, PTMA, nucleolin, clusterin, cysteine-rich angiogenic inducer 61, enolase 1, and biotinidase were detected in thyroid cancer patients' sera, warranting future analysis to confirm their potential as blood-based thyroid cancer markers. In conclusion, we demonstrated the potential of secretome analysis of thyroid cancer cell lines to identify novel proteins that can be independently verified in cell lines, xenografts, tumor tissues, and blood samples of thyroid cancer patients. These observations support their potential utility as minimally invasive biomarkers for thyroid carcinomas and their application in management of these diseases upon future validation.


Asunto(s)
Biomarcadores de Tumor/análisis , Proteínas de Neoplasias/análisis , Neoplasias de la Tiroides/química , Animales , Línea Celular Tumoral , Clusterina , Proteína 61 Rica en Cisteína , Proteínas de Unión al ADN , Humanos , Ratones , Ratones SCID , Proteínas de Neoplasias/metabolismo , Fosfoproteínas , Fosfopiruvato Hidratasa , Proteómica/métodos , Compuestos de Amonio Cuaternario , Proteínas de Unión al ARN , Neoplasias de la Tiroides/diagnóstico , Trasplante Heterólogo , Proteínas Supresoras de Tumor , Nucleolina
11.
J Exp Med ; 217(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32434219

RESUMEN

Recent studies indicate that cancer-associated fibroblasts (CAFs) are phenotypically and functionally heterogeneous. However, little is known about CAF subtypes, the roles they play in cancer progression, and molecular mediators of the CAF "state." Here, we identify a novel cell surface pan-CAF marker, CD49e, and demonstrate that two distinct CAF states, distinguished by expression of fibroblast activation protein (FAP), coexist within the CD49e+ CAF compartment in high-grade serous ovarian cancers. We show for the first time that CAF state influences patient outcomes and that this is mediated by the ability of FAP-high, but not FAP-low, CAFs to aggressively promote proliferation, invasion and therapy resistance of cancer cells. Overexpression of the FAP-low-specific transcription factor TCF21 in FAP-high CAFs decreases their ability to promote invasion, chemoresistance, and in vivo tumor growth, indicating that it acts as a master regulator of the CAF state. Understanding CAF states in more detail could lead to better patient stratification and novel therapeutic strategies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Proliferación Celular , Resistencia a Antineoplásicos , Proteínas de Neoplasias/metabolismo , Neoplasias Ováricas/metabolismo , Microambiente Tumoral , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Femenino , Humanos , Invasividad Neoplásica , Neoplasias Ováricas/patología
12.
Curr Opin Biotechnol ; 18(5): 460-6, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18023337

RESUMEN

Cancer stem cells (CSCs) are cells that drive tumorigenesis, as well as giving rise to a large population of differentiated progeny that make up the bulk of the tumor, but that lack tumorigenic potential. CSCs have been identified in a variety of human tumors, as assayed by their ability to initiate tumor growth in immunocompromised mice. Further characterization studies have demonstrated that gene expression profiles in breast cancer correlate with patient prognosis, and brain CSCs are specifically resistant to radiation through DNA damage repair. In addition, specific signaling pathways play a functional role in CSC self renewal and/or differentiation, and early studies indicate that CSCs are associated with a microenvironmental niche. Thus the biological properties of CSCs are just beginning to be revealed, and the continuation of these studies should lead to the development of CSC-targeted therapies for cancer treatment.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Humanos
13.
Methods Mol Biol ; 1678: 111-138, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29071678

RESUMEN

Cell surface proteins are widely studied in the search for new biomarkers and therapeutic targets, but there is little information available about the surfaceome of individual cells, and this is difficult to obtain experimentally, especially in heterogeneous samples. Flow cytometry is a simple and robust tool for assessing cell surface protein expression on a single-cell level in a wide variety of cell types. However, due to the cost and relative scarcity of reagents, it is typically limited to interrogating known markers, screening small curated subsets of likely candidates, or validating targets obtained via other high throughput methods such as transcriptional profiling. Given recent advances in our understanding of stem cells, tumor-initiating cells, and other rare populations in seemingly homogenous samples, and the relative lack of correlation between the transcriptome and the surfaceome, large-scale flow cytometry screens have become an appealing option. A relatively exhaustive microarray-like flow cytometry screening platform can reveal unexpected markers or sub-populations that are not readily detected by other methods. The single-cell resolution, reliability, and simplicity of flow cytometry and the additional benefit of sub-population/heterogeneity discrimination with the addition of functional and/or phenotypic co-stains allow for the rapid generation of very reliable data from a wide variety of samples at a low cost per sample. These larger datasets can be used for more elaborate bioinformatics, such as hierarchical clustering. Here we describe a method for high throughput cell surface profiling using conventional single or multicolor flow cytometry, which can be adapted to an antibody panel of any size.


Asunto(s)
Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Proteínas de la Membrana/metabolismo , Biomarcadores , Interpretación Estadística de Datos , Citometría de Flujo/métodos , Técnica del Anticuerpo Fluorescente , Humanos , Inmunofenotipificación
14.
N Engl J Med ; 351(7): 657-67, 2004 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-15306667

RESUMEN

BACKGROUND: The progression of chronic myelogenous leukemia (CML) to blast crisis is supported by self-renewing leukemic stem cells. In normal mouse hematopoietic stem cells, the process of self-renewal involves the beta-catenin-signaling pathway. We investigated whether leukemic stem cells in CML also use the beta-catenin pathway for self-renewal. METHODS: We used fluorescence-activated cell sorting to isolate hematopoietic stem cells, common myeloid progenitors, granulocyte-macrophage progenitors, and megakaryocyte-erythroid progenitors from marrow during several phases of CML and from normal marrow. BCR-ABL, beta-catenin, and LEF-1 transcripts were compared by means of a quantitative reverse-transcriptase-polymerase-chain-reaction assay in normal and CML hematopoietic stem cells and granulocyte-macrophage progenitors. Confocal fluorescence microscopy and a lymphoid enhancer factor/T-cell factor reporter assay were used to detect nuclear beta-catenin in these cells. In vitro replating assays were used to identify self-renewing cells as candidate leukemic stem cells, and the dependence of self-renewal on beta-catenin activation was tested by lentiviral transduction of hematopoietic progenitors with axin, an inhibitor of the beta-catenin pathway. RESULTS: The granulocyte-macrophage progenitor pool from patients with CML in blast crisis and imatinib-resistant CML was expanded, expressed BCR-ABL, and had elevated levels of nuclear beta-catenin as compared with the levels in progenitors from normal marrow. Unlike normal granulocyte-macrophage progenitors, CML granulocyte-macrophage progenitors formed self-renewing, replatable myeloid colonies, and in vitro self-renewal capacity was reduced by enforced expression of axin. CONCLUSIONS: Activation of beta-catenin in CML granulocyte-macrophage progenitors appears to enhance the self-renewal activity and leukemic potential of these cells.


Asunto(s)
Crisis Blástica/fisiopatología , Proteínas del Citoesqueleto/metabolismo , Células Madre Hematopoyéticas/fisiología , Leucemia Mielógena Crónica BCR-ABL Positiva/fisiopatología , Transactivadores/metabolismo , Adulto , Anciano , Antineoplásicos/uso terapéutico , Benzamidas , Ensayo de Unidades Formadoras de Colonias , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos , Femenino , Proteínas de Fusión bcr-abl/metabolismo , Granulocitos/citología , Células Madre Hematopoyéticas/metabolismo , Humanos , Mesilato de Imatinib , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Factor de Unión 1 al Potenciador Linfoide , Macrófagos/citología , Masculino , Microscopía Confocal , Persona de Mediana Edad , Piperazinas/uso terapéutico , Pirimidinas/uso terapéutico , ARN Neoplásico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo , beta Catenina
15.
Sci Rep ; 6: 25220, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27121191

RESUMEN

Rare cancer stem cells (CSC) are proposed to be responsible for tumour propagation and re-initiation and are functionally defined by identifying tumour-initiating cells (TICs) using the xenotransplantation limiting dilution assay (LDA). While TICs in clear cell renal cell carcinoma (ccRCC) appeared rare in NOD/SCID/IL2Rγ(-/-) (NSG) mice, xenografts formed more efficiently from small tumour fragments, indicating the LDA underestimated ccRCC TIC frequency. Mechanistic interrogation of the LDA identified multiple steps that influence ccRCC TIC quantitation. For example, tissue disaggregation destroys most ccRCC cells, common assays significantly overestimate tumour cell viability, and microenvironmental supplementation with human extracellular factors or pharmacological inhibition of anoikis increase clonogenicity and tumourigenicity of ccRCC cell lines and primary tumour cells. Identification of these previously uncharacterized concerns that cumulatively lead to substantial underestimation of TICs in ccRCC provides a framework for development of more accurate TIC assays in the future, both for this disease and for other cancers.


Asunto(s)
Carcinoma de Células Renales/fisiopatología , Recuento de Células/métodos , Células Madre Neoplásicas/fisiología , Patología/métodos , Animales , Modelos Animales de Enfermedad , Xenoinjertos , Ratones , Ratones SCID
16.
PLoS One ; 10(3): e0121872, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826681

RESUMEN

The high morbidity and mortality of patients with esophageal (E) and gastro-esophageal junction (GEJ) cancers, warrants new pre-clinical models for drug testing. The utility of primary tumor xenografts (PTXGs) as pre-clinical models was assessed. Clinicopathological, immunohistochemical markers (p53, p16, Ki-67, Her-2/neu and EGFR), and global mRNA abundance profiles were evaluated to determine selection biases of samples implanted or engrafted, compared with the underlying population. Nine primary E/GEJ adenocarcinoma xenograft lines were further characterized for the spectrum and stability of gene/protein expression over passages. Seven primary esophageal adenocarcinoma xenograft lines were treated with individual or combination chemotherapy. Tumors that were implanted (n=55) in NOD/SCID mice had features suggestive of more aggressive biology than tumors that were never implanted (n=32). Of those implanted, 21/55 engrafted; engraftment was associated with poorly differentiated tumors (p=0.04) and older patients (p=0.01). Expression of immunohistochemical markers were similar between patient sample and corresponding xenograft. mRNA differences observed between patient tumors and first passage xenografts were largely due to loss of human stroma in xenografts. mRNA patterns of early vs late passage xenografts and of small vs large tumors of the same passage were similar. Complete resistance was present in 2/7 xenografts while the remaining tumors showed varying degrees of sensitivity, that remained constant across passages. Because of their ability to recapitulate primary tumor characteristics during engraftment and across serial passaging, PTXGs can be useful clinical systems for assessment of drug sensitivity of human E/GEJ cancers.


Asunto(s)
Neoplasias Esofágicas/tratamiento farmacológico , Unión Esofagogástrica/patología , Neoplasias Gástricas/tratamiento farmacológico , Animales , Neoplasias Esofágicas/patología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Gástricas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Oncotarget ; 5(16): 6854-66, 2014 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-25149537

RESUMEN

Tumor-initiating cells (TICs) in squamous cell carcinoma of the head and neck (SCCHN) are best characterized by their surface expression of CD44. Although there is great interest in identifying strategies to target this population, no marker of these cells has been found to be functionally active. Here, we examined the expression of the purported marker of normal human oral epithelial stem cells, CD271. We show that CD271 expression is restricted to a subset of the CD44+ cells. Using xenograft assays, we show that the CD44+CD271+ subpopulation contains the most tumorigenic cells. Loss of CD271 function results in a block in the G2-M phase of the cell cycle and a profound negative impact on the capacity of these cells to initiate tumor formation in vivo. Incubation with recombinant NGF results in enhanced phosphorylation of Erk, providing additional evidence that CD271 is functionally active. Finally, incubation of SCCHN cells with antibody to CD271 results in decreased Erk phosphorylation and decreased tumor formation in vivo. Thus, our data are the first to demonstrate that CD271 more specifically identifies the TIC subpopulation within the CD44+ compartment in SCCHN and that this receptor is a functionally active and targetable molecule.


Asunto(s)
Antígenos de Neoplasias/biosíntesis , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Receptores de Factor de Crecimiento Nervioso/biosíntesis , Animales , Antígenos de Neoplasias/inmunología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Femenino , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/patología , Xenoinjertos , Humanos , Receptores de Hialuranos/biosíntesis , Receptores de Hialuranos/inmunología , Ratones , Ratones Endogámicos BALB C , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/patología , Proteínas del Tejido Nervioso/inmunología , Fosforilación , Receptores de Factor de Crecimiento Nervioso/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello , Ensayos Antitumor por Modelo de Xenoinjerto
18.
PLoS One ; 9(8): e105602, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25170899

RESUMEN

Cell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields. There are however currently few available methods for high-throughput analysis of large numbers of cell surface proteins. We describe here a high-throughput flow cytometry (HT-FC) platform for rapid analysis of 363 cell surface antigens. Here we demonstrate that HT-FC provides reproducible results, and use the platform to identify cell surface antigens that are influenced by common cell preparation methods. We show that multiple populations within complex samples such as primary tumors can be simultaneously analyzed by co-staining of cells with lineage-specific antibodies, allowing unprecedented depth of analysis of heterogeneous cell populations. Furthermore, standard informatics methods can be used to visualize, cluster and downsample HT-FC data to reveal novel signatures and biomarkers. We show that the cell surface profile provides sufficient molecular information to classify samples from different cancers and tissue types into biologically relevant clusters using unsupervised hierarchical clustering. Finally, we describe the identification of a candidate lineage marker and its subsequent validation. In summary, HT-FC combines the advantages of a high-throughput screen with a detection method that is sensitive, quantitative, highly reproducible, and allows in-depth analysis of heterogeneous samples. The use of commercially available antibodies means that high quality reagents are immediately available for follow-up studies. HT-FC has a wide range of applications, including biomarker discovery, molecular classification of cancers, or identification of novel lineage specific or stem cell markers.


Asunto(s)
Antígenos de Superficie/análisis , Citometría de Flujo/métodos , Proteoma/análisis , Proteómica/métodos , Biomarcadores/análisis , Línea Celular Tumoral , Células Cultivadas , Análisis por Conglomerados , Humanos , Células Jurkat , Células MCF-7 , Microscopía Fluorescente , Proteoma/clasificación , Proteoma/inmunología , Reproducibilidad de los Resultados
19.
Head Neck ; 34(1): 42-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21322081

RESUMEN

BACKGROUND: We previously identified by flow cytometry a Lineage-CD44+ (Lin-CD44+) subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma (HNSCC). We now correlate clinical and histologic factors with Lin-CD44+ cell frequency. METHODS: The study included 31 patients with HNSCC, of whom 87% had stage IV disease. The frequency of Lin-CD44+ cells and the success of xenografting patient tumors in mice were correlated with clinical and pathologic data. RESULTS: The mean frequency of Lin-CD44+ cells was 25% (0.4%-81%). It was 36% in patients who had recurrence versus 15% for those without recurrence (p = .04). Successful xenograft implantation occurred in 53%. Seventy-five percent of patients with successful xenografts had recurrence versus 21% of patients with unsuccessful xenografts (p = .003). CONCLUSIONS: Successful xenograft implantation and a high frequency of Lin-CD44+ cells correlate with known poor prognostic factors such as advanced T classification and recurrence. These findings may support the stem cell concept in HNSCC.


Asunto(s)
Biomarcadores de Tumor/análisis , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/patología , Receptores de Hialuranos/análisis , Células Madre Neoplásicas/patología , Adulto , Animales , Biomarcadores , Estudios de Seguimiento , Humanos , Ratones , Persona de Mediana Edad , Estadificación de Neoplasias , Trasplante Heterólogo
20.
EMBO Mol Med ; 2(7): 275-88, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20623734

RESUMEN

Apoptosis is a fundamental host defence mechanism against invading microbes. Inactivation of NF-kappaB attenuates encephalomyocarditis virus (EMCV) virulence by triggering rapid apoptosis of infected cells, thereby pre-emptively limiting viral replication. Recent evidence has shown that hypoxia-inducible factor (HIF) increases NF-kappaB-mediated anti-apoptotic response in clear-cell renal cell carcinoma (CCRCC) that commonly exhibit hyperactivation of HIF due to the loss of its principal negative regulator, von Hippel-Lindau (VHL) tumour suppressor protein. Here, we show that EMCV challenge induces a strong NF-kappaB-dependent gene expression profile concomitant with a lack of interferon-mediated anti-viral response in VHL-null CCRCC, and that multiple established CCRCC cell lines, as well as early-passage primary CCRCC cultured cells, are acutely susceptible to EMCV replication and virulence. Functional restoration of VHL or molecular suppression of HIF or NF-kappaB dramatically reverses CCRCC cellular susceptibility to EMCV-induced killing. Notably, intratumoural EMCV treatment of CCRCC in a murine xenograft model rapidly regresses tumour growth. These findings provide compelling pre-clinical evidence for the usage of EMCV in the treatment of CCRCC and potentially other tumours with elevated HIF/NF-kappaB-survival signature.


Asunto(s)
Carcinoma de Células Renales/terapia , Virus de la Encefalomiocarditis/fisiología , Neoplasias Renales/terapia , Virus Oncolíticos/fisiología , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Virus de la Encefalomiocarditis/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Ratones , Ratones SCID , FN-kappa B/metabolismo , Virus Oncolíticos/genética , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal , Trasplante Heterólogo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA