Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 57(17): 4607-4611, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29534325

RESUMEN

Herein, we report use of [Li+ @C60 ]TFSI- as a dopant for spiro-MeOTAD in lead halide perovskite solar cells. This approach gave an air stability nearly 10-fold that of conventional devices using Li+ TFSI- . Such high stability is attributed to the hydrophobic nature of [Li+ @C60 ]TFSI- repelling moisture and absorbing intruding oxygen, thereby protecting the perovskite device from degradation. Furthermore, [Li+ @C60 ]TFSI- could oxidize spiro-MeOTAD without the need for oxygen. The encapsulated devices exhibited outstanding air stability for more than 1000 h while illuminated under ambient conditions.

2.
ACS Appl Mater Interfaces ; 15(9): 12485-12494, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847773

RESUMEN

A heterojunction is the key junction for charge extraction in many thin film solar cell technologies. However, the structure and band alignment of the heterojunction in the operating device are often difficult to predict from calculations and, due to the complexity and narrow thickness of the interface, are difficult to measure directly. In this study, we demonstrate a technique for direct measurement of the band alignment and interfacial electric field variations of a fully functional lead halide perovskite solar cell structure under operating conditions using hard X-ray photoelectron spectroscopy (HAXPES). We describe the design considerations required in both the solar cell devices and the measurement setup and show results for the perovskite, hole transport, and gold layers at the back contact of the solar cell. For the investigated design, the HAXPES measurements suggest that 70% of the photovoltage was generated at this back contact, distributed rather equally between the hole transport material/gold interface and the perovskite/hole transport material interface. In addition, we were also able to reconstruct the band alignment at the back contact at equilibrium in the dark and at open circuit under illumination.

3.
ACS Appl Mater Interfaces ; 9(35): 29707-29716, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28792724

RESUMEN

The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH2)2, CH3NH3)Pb(I,Br)3 (FAPbI3:MAPbBr3) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnOx. Exposing the samples to the heat, the vacuum, and even the counter reactant of H2O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C2H5)2 either by itself or in combination with H2O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH3)2)4 does not seem to degrade the bulk of the perovskite film, and conformal SnOx films can successfully be grown on top of it using atomic layer deposition. Using this SnOx film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C70-butyric acid methyl ester. However, the devices with SnOx show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnOx films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnOx interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnOx growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.

4.
Adv Mater ; 29(17)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28229537

RESUMEN

Mixed ion perovskite solar cells (PSC) are manufactured with a metal-free hole contact based on press-transferred single-walled carbon nanotube (SWCNT) film infiltrated with 2,2,7,-7-tetrakis(N,N-di-p-methoxyphenylamine)-9,90-spirobifluorene (Spiro-OMeTAD). By means of maximum power point tracking, their stabilities are compared with those of standard PSCs employing spin-coated Spiro-OMeTAD and a thermally evaporated Au back contact, under full 1 sun illumination, at 60 °C, and in a N2 atmosphere. During the 140 h experiment, the solar cells with the Au electrode experience a dramatic, irreversible efficiency loss, rendering them effectively nonoperational, whereas the SWCNT-contacted devices show only a small linear efficiency loss with an extrapolated lifetime of 580 h.

5.
ChemSusChem ; 10(2): 434-441, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27873480

RESUMEN

Single-walled carbon nanotubes (SWCNTs) show great potential as an alternative material for front electrodes in photovoltaic applications, especially for flexible devices. In this work, a press-transferred transparent SWCNT film was utilized as front electrode for colloidal quantum dot solar cells (CQDSCs). The solar cells were fabricated on both glass and flexible substrates, and maximum power conversion efficiencies of 5.5 and 5.6 %, respectively, were achieved, which corresponds to 90 and 92 % of an indium-doped tin oxide (ITO)-based device (6.1 %). The SWCNTs are therefore a very good alternative to the ITO-based electrodes especially for flexible solar cells. The optical electric field distribution and optical losses within the devices were simulated theoretically and the results agree with the experimental results. With the optical simulations that were performed it may also be possible to enhance the photovoltaic performance of SWCNT-based solar cells even further by optimizing the device configuration or by using additional optical active layers, thus reducing light reflection of the device and increasing light absorption in the quantum dot layer.


Asunto(s)
Colorantes/química , Suministros de Energía Eléctrica , Nanotubos de Carbono/química , Puntos Cuánticos/química , Energía Solar , Coloides , Electrodos , Fenómenos Ópticos , Compuestos de Estaño/química
6.
ACS Appl Mater Interfaces ; 9(40): 34970-34978, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28925263

RESUMEN

Metal halide perovskites have emerged as materials of high interest for solar energy-to-electricity conversion, and in particular, the use of mixed-ion structures has led to high power conversion efficiencies and improved stability. For this reason, it is important to develop means to obtain atomic level understanding of the photoinduced behavior of these materials including processes such as photoinduced phase separation and ion migration. In this paper, we implement a new methodology combining visible laser illumination of a mixed-ion perovskite ((FAPbI3)0.85(MAPbBr3)0.15) with the element specificity and chemical sensitivity of core-level photoelectron spectroscopy. By carrying out measurements at a synchrotron beamline optimized for low X-ray fluxes, we are able to avoid sample changes due to X-ray illumination and are therefore able to monitor what sample changes are induced by visible illumination only. We find that laser illumination causes partially reversible chemistry in the surface region, including enrichment of bromide at the surface, which could be related to a phase separation into bromide- and iodide-rich phases. We also observe a partially reversible formation of metallic lead in the perovskite structure. These processes occur on the time scale of minutes during illumination. The presented methodology has a large potential for understanding light-induced chemistry in photoactive materials and could specifically be extended to systematically study the impact of morphology and composition on the photostability of metal halide perovskites.

7.
J Phys Chem Lett ; 6(21): 4259-64, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26538041

RESUMEN

Conductivity of methylammonium lead triiodide (MAPbI3) perovskite was measured on different mesoporous metal oxide scaffolds: TiO2, Al2O3, and ZrO2, as a function of incident light irradiation and temperature. It was found that MAPbI3 exhibits intrinsic charge separation, and its conductivity stems from a majority of free charge carriers. The crystal morphology of the MAPbI3 was found to significantly affect the photoconductivity, whereas in the dark the conductivity is governed by the perovskite in the pores of the mesoporous scaffold. The temperature-dependent conductivity measurements also indicate the presence of states within the band gap of the perovskite. Despite a relatively large amount of crystal defects in the measured material, the main recombination mechanism of the photogenerated charges is bimolecular (band-to-band), which suggests that the defect states are rather inactive in the recombination. This may explain the remarkable efficiencies obtained for perovskite solar cells prepared with wet-chemical methods.

8.
ACS Appl Mater Interfaces ; 6(3): 2074-9, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24410094

RESUMEN

Conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with iron(III) tris-p-toluenesulfonate (PEDOT:Tos) having metallic conductivity was coated onto fluorine-doped tin oxide (FTO) glass and plain glass substrates and used as a counter electrode (CE) in a dye-sensitized solar cell (DSC) with a [Co(bpy)3](3+/2+) complex redox shuttle. DSCs with PEDOT:Tos/glass CE yielded power conversion efficiencies (PCE) of 6.3%, similar to that of DSCs with platinized FTO glass CE (6.1%). The PEDOT:Tos-based counter electrodes had 5 to 10 times lower charge-transfer resistance than the Pt/FTO CE in DSCs, as analyzed by impedance spectroscopy. More detailed studies in symmetrical CE-CE cells showed that the PEDOT:Tos layers are nanoporous. Not all internal area can be used catalytically under solar cell conditions and effective charge-transfer resistance was similar to that of Pt/FTO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA