Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854031

RESUMEN

Background: Predicting future brain health is a complex endeavor that often requires integrating diverse data sources. The neural patterns and interactions identified through neuroimaging serve as the fundamental basis and early indicators that precede the manifestation of observable behaviors or psychological states. New Method: In this work, we introduce a multimodal predictive modeling approach that leverages an imaging-informed methodology to gain insights into future behavioral outcomes. We employed three methodologies for evaluation: an assessment-only approach using support vector regression (SVR), a neuroimaging-only approach using random forest (RF), and an image-assisted method integrating the static functional network connectivity (sFNC) matrix from resting-state functional magnetic resonance imaging (rs-fMRI) alongside assessments. The image-assisted approach utilized a partially conditional variational autoencoder (PCVAE) to predict brain health constructs in future visits from the behavioral data alone. Results: Our performance evaluation indicates that the image-assisted method excels in handling conditional information to predict brain health constructs in subsequent visits and their longitudinal changes. These results suggest that during the training stage, the PCVAE model effectively captures relevant information from neuroimaging data, thereby potentially improving accuracy in making future predictions using only assessment data. Comparison with Existing Methods: The proposed image-assisted method outperforms traditional assessment-only and neuroimaging-only approaches by effectively integrating neuroimaging data with assessment factors. Conclusion: This study underscores the potential of neuroimaging-informed predictive modeling to advance our comprehension of the complex relationships between cognitive performance and neural connectivity.

2.
Brain Imaging Behav ; 18(3): 630-645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38340285

RESUMEN

While one can characterize mental health using questionnaires, such tools do not provide direct insight into the underlying biology. By linking approaches that visualize brain activity to questionnaires in the context of individualized prediction, we can gain new insights into the biology and behavioral aspects of brain health. Resting-state fMRI (rs-fMRI) can be used to identify biomarkers of these conditions and study patterns of abnormal connectivity. In this work, we estimate mental health quality for individual participants using static functional network connectivity (sFNC) data from rs-fMRI. The deep learning model uses the sFNC data as input to predict four categories of mental health quality and visualize the neural patterns indicative of each group. We used guided gradient class activation maps (guided Grad-CAM) to identify the most discriminative sFNC patterns. The effectiveness of this model was validated using the UK Biobank dataset, in which we showed that our approach outperformed four alternative models by 4-18% accuracy. The proposed model's performance evaluation yielded a classification accuracy of 76%, 78%, 88%, and 98% for the excellent, good, fair, and poor mental health categories, with poor mental health accuracy being the highest. The findings show distinct sFNC patterns across each group. The patterns associated with excellent mental health consist of the cerebellar-subcortical regions, whereas the most prominent areas in the poor mental health category are in the sensorimotor and visual domains. Thus the combination of rs-fMRI and deep learning opens a promising path for developing a comprehensive framework to evaluate and measure mental health. Moreover, this approach had the potential to guide the development of personalized interventions and enable the monitoring of treatment response. Overall this highlights the crucial role of advanced imaging modalities and deep learning algorithms in advancing our understanding and management of mental health.


Asunto(s)
Encéfalo , Aprendizaje Profundo , Imagen por Resonancia Magnética , Salud Mental , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Masculino , Femenino , Persona de Mediana Edad , Mapeo Encefálico/métodos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Vías Nerviosas/fisiopatología , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA