Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(3): e23448, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38305779

RESUMEN

Diabetes causes a range of complications that can affect multiple organs. Hyperglycemia is an important driver of diabetes-associated complications, mediated by biological processes such as dysfunction of endothelial cells, fibrosis, and alterations in leukocyte number and function. Here, we dissected the transcriptional response of key cell types to hyperglycemia across multiple tissues using single-cell RNA sequencing (scRNA-seq) and identified conserved, as well as organ-specific, changes associated with diabetes complications. By studying an early time point of diabetes, we focus on biological processes involved in the initiation of the disease, before the later organ-specific manifestations had supervened. We used a mouse model of type 1 diabetes and performed scRNA-seq on cells isolated from the heart, kidney, liver, and spleen of streptozotocin-treated and control male mice after 8 weeks and assessed differences in cell abundance, gene expression, pathway activation, and cell signaling across organs and within organs. In response to hyperglycemia, endothelial cells, macrophages, and monocytes displayed organ-specific transcriptional responses, whereas fibroblasts showed similar responses across organs, exhibiting altered metabolic gene expression and increased myeloid-like fibroblasts. Furthermore, we found evidence of endothelial dysfunction in the kidney, and of endothelial-to-mesenchymal transition in streptozotocin-treated mouse organs. In summary, our study represents the first single-cell and multi-organ analysis of early dysfunction in type 1 diabetes-associated hyperglycemia, and our large-scale dataset (comprising 67 611 cells) will serve as a starting point, reference atlas, and resource for further investigating the events leading to early diabetic disease.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hiperglucemia , Ratones , Animales , Masculino , Diabetes Mellitus Tipo 1/genética , Células Endoteliales , Estreptozocina/toxicidad , Ratones Endogámicos C57BL , Hiperglucemia/genética , Análisis de Secuencia de ARN
2.
FASEB J ; 37(11): e23231, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37779347

RESUMEN

Some metabolic diseases, such as diabetes and hyperlipidemia, are associated with a state of inflammation, which adversely affects cardiovascular health. Emerging evidence suggests that long-term hyperactivation of innate immune cells and their bone marrow progenitors, termed trained immunity, functions to accelerate atherosclerosis and its complications in cardiometabolic diseases. This review will focus on how trained immunity is established, particularly through metabolic and epigenetic reprogramming, to cause persistent and deleterious changes in immune cell function, even after the original stimulus has been corrected or removed. Understanding the mechanisms driving maladaptive trained immunity and its fundamental contribution to cardiovascular disease might enable the development of novel disease-modifying therapeutics for the reduction in cardiovascular risk in diabetes, hyperlipidemia, and related cardiometabolic states.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Hiperlipidemias , Humanos , Inmunidad Innata , Inmunidad Entrenada , Enfermedades Cardiovasculares/etiología
3.
J Environ Sci (China) ; 145: 28-49, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38844322

RESUMEN

Microbial fuel cells (MFCs) have become more prevalent in groundwater remediation due to their capacity for power generation, removal of pollution, ease of assembly, and low secondary contamination. It is currently being evaluated for practical application in an effort to eliminate groundwater pollution. However, a considerable majority of research was conducted in laboratories. But the operational circumstances including anaerobic characteristics, pH, and temperature vary at different sites. In addition, the complexity of contaminants and the positioning of MFCs significantly affect remediation performance. Taking the aforementioned factors into consideration, this review summarizes a bibliography on the application of MFCs for the remediation of groundwater contamination during the last ten decades and assesses the impact of environmental conditions on the treatment performance. The design of the reactor, including configuration, dimensions, electrodes, membranes, separators, and target contaminants are discussed. This review aims to provide practical guidance for the future application of MFCs in groundwater remediation.


Asunto(s)
Fuentes de Energía Bioeléctrica , Restauración y Remediación Ambiental , Agua Subterránea , Agua Subterránea/química , Restauración y Remediación Ambiental/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
4.
Circulation ; 144(12): 961-982, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34255973

RESUMEN

BACKGROUND: Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. METHODS: Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. RESULTS: In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. CONCLUSIONS: Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.


Asunto(s)
Aterosclerosis/inmunología , Diabetes Mellitus Experimental/inmunología , Hiperglucemia/inmunología , Inmunidad Celular/inmunología , Leucocitos Mononucleares/inmunología , Macrófagos/inmunología , Animales , Aterosclerosis/patología , Células Cultivadas , Diabetes Mellitus Experimental/patología , Endarterectomía Carotidea , Humanos , Hiperglucemia/patología , Leucocitos Mononucleares/patología , Macrófagos/patología , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
5.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445361

RESUMEN

Inflammation promotes endothelial dysfunction, but the underlying mechanisms remain poorly defined in vivo. Using translational vascular function testing in myocardial infarction patients, a situation where inflammation is prevalent, and knock-out (KO) mouse models we demonstrate a role for mitogen-activated-protein-kinases (MAPKs) in endothelial dysfunction. Myocardial infarction significantly lowers mitogen and stress kinase 1/2 (MSK1/2) expression in peripheral blood mononuclear cells and diminished endothelial function. To further understand the role of MSK1/2 in vascular function we developed in vivo animal models to assess vascular responses to vasoactive drugs using laser Doppler imaging. Genetic deficiency of MSK1/2 in mice increased plasma levels of pro-inflammatory cytokines and promoted endothelial dysfunction, through attenuated production of nitric oxide (NO), which were further exacerbated by cholesterol feeding. MSK1/2 are activated by toll-like receptors through MyD88. MyD88 KO mice showed preserved endothelial function and reduced plasma cytokine expression, despite significant hypercholesterolemia. MSK1/2 kinases interact with MAPK-activated proteins 2/3 (MAPKAP2/3), which limit cytokine synthesis. Cholesterol-fed MAPKAP2/3 KO mice showed reduced plasma cytokine expression and preservation of endothelial function. MSK1/2 plays a significant role in the development of endothelial dysfunction and may provide a novel target for intervention to reduce vascular inflammation. Activation of MSK1/2 could reduce pro-inflammatory responses and preserve endothelial vasodilator function before development of significant vascular disease.


Asunto(s)
Proteínas Quinasas S6 Ribosómicas 90-kDa/fisiología , Enfermedades Vasculares/genética , Adulto , Anciano , Animales , Estudios de Casos y Controles , Células Cultivadas , Estudios de Cohortes , Endotelio Vascular/fisiopatología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal/fisiología , Enfermedades Vasculares/fisiopatología , Adulto Joven
6.
Diabetologia ; 62(12): 2179-2187, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31690986

RESUMEN

Extracellular vesicles (EVs) are submicron-sized lipid envelopes that are produced and released from a parent cell and can be taken up by a recipient cell. EVs are capable of mediating cellular signalling by carrying nucleic acids, proteins, lipids and cellular metabolites between cells and organs. Metabolic dysfunction is associated with changes in plasma concentrations of EVs as well as alterations in their EV cargo. Since EVs can act as messengers between parent and recipient cells, they could be involved in cell-to-cell and organ-to-organ communication in metabolic diseases. Recent literature has shown that EVs are produced by cells within metabolic tissues, such as adipose tissue, pancreas, muscle and liver. These vesicles have therefore been proposed as a novel intercellular communication mode in systemic metabolic regulation. In this review, we will describe and discuss the current literature that investigates the role of adipose-derived EVs in the regulation of obesity-associated metabolic disease. We will particularly focus on the EV-dependent communication between adipocytes, the vasculature and immune cells in type 2 diabetes.


Asunto(s)
Exosomas/metabolismo , Vesículas Extracelulares/fisiología , Enfermedades Metabólicas/metabolismo , Adipocitos/metabolismo , Comunicación Celular/fisiología , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Macrófagos/metabolismo
7.
Stroke ; 48(8): 2292-2296, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28536169

RESUMEN

BACKGROUND AND PURPOSE: Extracellular vesicles (EVs) are protein-lipid complexes released from cells, as well as actively exocytosed, as part of normal physiology, but also during pathological processes such as those occurring during a stroke. Our aim was to determine the inflammatory potential of stroke EVs. METHODS: EVs were quantified and analyzed in the sera of patients after an acute stroke (<24 hours; OXVASC [Oxford Vascular Study]). Isolated EV fractions were subjected to untargeted proteomic analysis by liquid chromatography mass-spectrometry/mass-spectrometry and then applied to macrophages in culture to investigate inflammatory gene expression. RESULTS: EV number, but not size, is significantly increased in stroke patients when compared to age-matched controls. Proteomic analysis reveals an overall increase in acute phase proteins, including C-reactive protein. EV fractions applied to monocyte-differentiated macrophage cultures induced inflammatory gene expression. CONCLUSIONS: Together these data show that EVs from stroke patients are proinflammatory in nature and are capable of inducing inflammation in immune cells.


Asunto(s)
Vesículas Extracelulares/metabolismo , Mediadores de Inflamación/sangre , Activación de Macrófagos/fisiología , Macrófagos/metabolismo , Accidente Cerebrovascular/sangre , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Inglaterra/epidemiología , Femenino , Humanos , Inflamación/sangre , Inflamación/diagnóstico , Inflamación/epidemiología , Masculino , Vigilancia de la Población , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología
8.
Microvasc Res ; 85: 86-92, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23123637

RESUMEN

Endothelial dysfunction is associated with early development of cardiovascular disease, making longitudinal measurements desirable. We devised a protocol using laser Doppler imaging (LDI) and iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) to assess the skin microcirculation longitudinally in mice every 4 weeks for 24 weeks in two groups of C57BL/6 mice, chow versus high-cholesterol diet(known to induce endothelial dysfunction). LDI measurements were compared with vascular function (isometric tension) measured using wire myography in the tail artery in response to ACh and SNP. Microvascular responses to ACh were significantly reduced in cholesterol-fed versus chow-fed mice from week 4 onwards (P<0.005, ANOVA). Pre-treatment with N(G)-nitro-L-arginine methyl-ester-hydrochloride (L-NAME) showed a significant reduction in ACh response compared with vehicle-treated animals (P<0.05) at baseline and at 12 weeks. In cholesterol-fed mice, ACh responses were 226 ± 21 and 180 ± 21 AU (P=0.03) before and after L-NAME, respectively. A reduction in ex-vivo ACh response was detected in the tail artery in cholesterol-fed mice, and a significant correlation found between peak microvascular ACh response and maximum ACh response in the tail artery (r=0.699, P=0.017). No changes were found in SNP responses in the microvasculature or tail artery. Using this protocol, we have shown longitudinal decreases in microvascular endothelial function to cholesterol feeding. L-NAME studies confirm that the reduced vasodilatation to ACh in cholesterol-fed mice was mediated partly through reduced NO bioavailability. Wire myography of tail arteries confirmed that in-vivo measurements of microvascular function reflect ex-vivo vascular function in other beds. Longitudinal assessments of skin microvascular function in mice could provide a useful translatable model for assessing early endothelial dysfunction.


Asunto(s)
Endotelio Vascular/patología , Acetilcolina/metabolismo , Animales , Aorta/patología , Arterias/patología , Peso Corporal , Colesterol/metabolismo , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Endotelio Vascular/metabolismo , Flujometría por Láser-Doppler/métodos , Lípidos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Microcirculación , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/química , Nitroprusiato/farmacología
9.
J Clin Med ; 12(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37510783

RESUMEN

The past decade has seen a marked expansion in the understanding of the pathobiology of acute myocardial infarction and the systemic inflammatory response that it elicits. At the same time, a portfolio of tools has emerged to characterise some of these processes in vivo. However, in clinical practice, key decision making still largely relies on assessment built around the timing of the onset of chest pain, features on electrocardiograms and measurements of plasma troponin. Better understanding the heterogeneity of myocardial injury and patient-level responses should provide new opportunities for diagnostic stratification to enable the delivery of more rational therapies. Characterisation of the myocardium using emerging imaging techniques such as the T1, T2 and T2* mapping techniques can provide enhanced assessments of myocardial statuses. Physiological measures, which include microcirculatory resistance and coronary flow reserve, have been shown to predict outcomes in AMI and can be used to inform treatment selection. Functionally informative blood biomarkers, including cellular transcriptomics; microRNAs; extracellular vesicle analyses and soluble markers, all give insights into the nature and timing of the innate immune response and its regulation in acute MI. The integration of these and other emerging tools will be key to developing a fuller understanding of the patient-level processes of myocardial injury and repair and should fuel new possibilities for rational therapeutic intervention.

10.
Transplant Proc ; 55(2): 402-407, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36878746

RESUMEN

Living donor liver transplant in addition to its lifesaving therapy is a cost-effective alternate to long-term disease management in patients with chronic liver disease. Financial constraint is the biggest hurdle faced by patients in developing countries in availing the liver transplantation. So, we conducted this study to report a government-funded financial support system for liver transplant services. A total of 198 patients who underwent living donor liver transplant with at least 90 days follow-up were included in the study. According to proxy means test score, 52.2% patients were from low and middle socioeconomic groups and 64.6% of patients underwent liver transplantation through government support. Out of 198 patients who underwent liver transplantation 29.6% had monthly income below 25,000 Pakistani rupees ($114). In recipients, 90-day mortality was 7.1% and morbidity was 67.1%. Donor morbidity was 23.2% without any mortality. This financial model can serve as a valuable source for middle and low income group countries to overcome the financial challenge and make liver transplant an accessible, affordable, and economically viable option.


Asunto(s)
Hepatopatías , Trasplante de Hígado , Humanos , Donadores Vivos , Apoyo Financiero , Renta
11.
Environ Pollut ; 338: 122689, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804901

RESUMEN

Abiogenic silicon (Si), though deemed a quasi-nutrient, remains largely inaccessible to plants due to its prevalence within mineral ores. Nevertheless, the influence of Si extends across a spectrum of pivotal plant processes. Si emerges as a versatile boon for plants, conferring a plethora of advantages. Notably, it engenders substantial enhancements in biomass, yield, and overall plant developmental attributes. Beyond these effects, Si augments the activities of vital antioxidant enzymes, encompassing glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), among others. It achieves through the augmentation of reactive oxygen species (ROS) scavenging gene expression, thus curbing the injurious impact of free radicals. In addition to its effects on plants, Si profoundly ameliorates soil health indicators. Si tangibly enhances soil vitality by elevating soil pH and fostering microbial community proliferation. Furthermore, it exerts inhibitory control over ions that could inflict harm upon delicate plant cells. During interactions within the soil matrix, Si readily forms complexes with potentially toxic metals (PTEs), encapsulating them through Si-PTEs interactions, precipitative mechanisms, and integration within colloidal Si and mineral strata. The amalgamation of Si with other soil amendments, such as biochar, nanoparticles, zeolites, and composts, extends its capacity to thwart PTEs. This synergistic approach enhances soil organic matter content and bolsters overall soil quality parameters. The utilization of Si-based fertilizers and nanomaterials holds promise for further increasing food production and fortifying global food security. Besides, gaps in our scientific discourse persist concerning Si speciation and fractionation within soils, as well as its intricate interplay with PTEs. Nonetheless, future investigations must delve into the precise functions of abiogenic Si within the physiological and biochemical realms of both soil and plants, especially at the critical juncture of the soil-plant interface. This review seeks to comprehensively address the multifaceted roles of Si in plant and soil systems during interactions with PTEs.


Asunto(s)
Silicio , Contaminantes del Suelo , Silicio/metabolismo , Suelo/química , Antioxidantes/metabolismo , Plantas/metabolismo , Glutatión/metabolismo , Minerales/metabolismo , Contaminantes del Suelo/análisis
12.
bioRxiv ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37905061

RESUMEN

Background: Cholesterol-loading of mouse aortic vascular smooth muscle cells (mVSMCs) downregulates miR-143/145, a master regulator of the contractile state downstream of TGFß signaling. In vitro, this results in transitioning from a contractile mVSMC to a macrophage-like state. This process likely occurs in vivo based on studies in mouse and human atherosclerotic plaques. Objectives: To test whether cholesterol-loading reduces VSMC TGFß signaling and if cholesterol efflux will restore signaling and the contractile state in vitro and in vivo. Methods: Human coronary artery (h)VSMCs were cholesterol-loaded, then treated with HDL (to promote cholesterol efflux). For in vivo studies, partial conditional deletion of Tgfßr2 in lineage-traced VSMC mice was induced. Mice wild-type for VSMC Tgfßr2 or partially deficient (Tgfßr2+/-) were made hypercholesterolemic to establish atherosclerosis. Mice were then treated with apoA1 (which forms HDL). Results: Cholesterol-loading of hVSMCs downregulated TGFß signaling and contractile gene expression; macrophage markers were induced. TGFß signaling positively regulated miR-143/145 expression, increasing Acta2 expression and suppressing KLF4. Cholesterol-loading localized TGFß receptors into lipid rafts, with consequent TGFß signaling downregulation. Notably, in cholesterol-loaded hVSMCs HDL particles displaced receptors from lipid rafts and increased TGFß signaling, resulting in enhanced miR-145 expression and decreased KLF4-dependent macrophage features. ApoA1 infusion into Tgfßr2+/- mice restored Acta2 expression and decreased macrophage-marker expression in plaque VSMCs, with evidence of increased TGFß signaling. Conclusions: Cholesterol suppresses TGFß signaling and the contractile state in hVSMC through partitioning of TGFß receptors into lipid rafts. These changes can be reversed by promotion of cholesterol efflux, consistent with evidence in vivo.

13.
Cardiovasc Res ; 119(1): 236-251, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35134856

RESUMEN

AIMS: Acute myocardial infarction rapidly increases blood neutrophils (<2 h). Release from bone marrow, in response to chemokine elevation, has been considered their source, but chemokine levels peak up to 24 h after injury, and after neutrophil elevation. This suggests that additional non-chemokine-dependent processes may be involved. Endothelial cell (EC) activation promotes the rapid (<30 min) release of extracellular vesicles (EVs), which have emerged as an important means of cell-cell signalling and are thus a potential mechanism for communicating with remote tissues. METHODS AND RESULTS: Here, we show that injury to the myocardium rapidly mobilizes neutrophils from the spleen to peripheral blood and induces their transcriptional activation prior to arrival at the injured tissue. Time course analysis of plasma-EV composition revealed a rapid and selective increase in EVs bearing VCAM-1. These EVs, which were also enriched for miRNA-126, accumulated preferentially in the spleen where they induced local inflammatory gene and chemokine protein expression, and mobilized splenic-neutrophils to peripheral blood. Using CRISPR/Cas9 genome editing, we generated VCAM-1-deficient EC-EVs and showed that its deletion removed the ability of EC-EVs to provoke the mobilization of neutrophils. Furthermore, inhibition of miRNA-126 in vivo reduced myocardial infarction size in a mouse model. CONCLUSIONS: Our findings show a novel EV-dependent mechanism for the rapid mobilization of neutrophils to peripheral blood from a splenic reserve and establish a proof of concept for functional manipulation of EV-communications through genetic alteration of parent cells.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Infarto del Miocardio , Ratones , Animales , Neutrófilos/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Infarto del Miocardio/metabolismo , Células Endoteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
14.
Ann Transl Med ; 10(15): 835, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36034978

RESUMEN

Background: The long-noncoding RNA colorectal neoplasia differentially expressed (CRNDE) gene has been found to be upregulated in several solid tumors. Whether CRNDE affects osteosarcoma (OS) and its underling mechanism remains unknown. Methods: Tumor tissues and corresponding normal tissues were collected from 45 patients with OS. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was applied to determine lncRNA CRNDE level in the tissues. Participants were divided into a high CRNDE group and a low CRNDE group according to the median value of lncRNA CRNDE expression detected by in situ hybridization (ISH). The differences between high and low expression of lncRNA CRNDE in patients were compared clinically by chi-square test. Kaplan-Meier survival analysis was applied to analyze the relationship between lncRNA CRNDE expression and patient survival. Subsequently, silencing or overexpression of lncRNA CRNDE were performed in MG63 and 143B cell lines, qRT-PCR was applied to verify the expression of lncRNA CRNDE, miR-136-5p, and MRP9; dual-luciferase reporter assay was used to evaluate the targeting relationship between miR-136-5p, lncRNA CRNDE, and Cell Counting Kit-8 (CCK8), wound-healing, and Transwell assays were used to analyze for cell proliferation, migration, and invasion, respectively, and western blot was used to detect expression in cells. Results: The expression of CRNDE in OS tissues was higher than that in normal tissues. High lncRNA CRNDE expression was significantly associated with clinical stage, lung metastasis, and poor prognosis in OS patients. Additionally, overexpression of lncRNA CRNDE promoted proliferation and migration of OS cells. Bioinformatics analysis showed that lncRNA CRNDE competitively inhibited miR-136-5p through acting as a competitive endogenous RNA (ceRNA). It was also revealed that miR-136-5p is a binding target gene of lncRNA CRNDE and that MRP9 is involved in this process as a downstream target gene of miR-136-5p. Conclusions: The lncRNA CRNDE promotes the proliferation and migration of OS cells by regulating the miR-136-5p/MRP9 pathway, and lncRNA CRNDE can be a significant marker of OS prognosis.

15.
J Extracell Vesicles ; 11(1): e12151, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041249

RESUMEN

Previously thought to be nothing more than cellular debris, extracellular vesicles (EVs) are now known to mediate physiological and pathological functions throughout the body. We now understand more about their capacity to transfer nucleic acids and proteins between distant organs, the interaction of their surface proteins with target cells, and the role of vesicle-bound lipids in health and disease. To date, most observations have been made in reductionist cell culture systems, or as snapshots from patient cohorts. The heterogenous population of vesicles produced in vivo likely act in concert to mediate both beneficial and detrimental effects. EVs play crucial roles in both the pathogenesis of diseases, from cancer to neurodegenerative disease, as well as in the maintenance of system and organ homeostasis. This two-part review draws on the expertise of researchers working in the field of EV biology and aims to cover the functional role of EVs in physiology and pathology. Part I will outline the role of EVs in normal physiology.


Asunto(s)
Vesículas Extracelulares/metabolismo , Homeostasis/fisiología , Plaquetas/metabolismo , Fenómenos Fisiológicos Cardiovasculares , Micropartículas Derivadas de Células/metabolismo , Sistema Nervioso Central/fisiología , Exosomas/metabolismo , Microbioma Gastrointestinal/fisiología , Humanos , Inmunidad , Inflamación , Fenómenos Fisiológicos Musculoesqueléticos , Transducción de Señal , Sistema Urogenital/fisiología
16.
J Extracell Vesicles ; 11(1): e12190, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041301

RESUMEN

It is clear from Part I of this series that extracellular vesicles (EVs) play a critical role in maintaining the homeostasis of most, if not all, normal physiological systems. However, the majority of our knowledge about EV signalling has come from studying them in disease. Indeed, EVs have consistently been associated with propagating disease pathophysiology. The analysis of EVs in biofluids, obtained in the clinic, has been an essential of the work to improve our understanding of their role in disease. However, to interfere with EV signalling for therapeutic gain, a more fundamental understanding of the mechanisms by which they contribute to pathogenic processes is required. Only by discovering how the EV populations in different biofluids change-size, number, and physicochemical composition-in clinical samples, may we then begin to unravel their functional roles in translational models in vitro and in vivo, which can then feedback to the clinic. In Part II of this review series, the functional role of EVs in pathology and disease will be discussed, with a focus on in vivo evidence and their potential to be used as both biomarkers and points of therapeutic intervention.


Asunto(s)
Vesículas Extracelulares/metabolismo , Plaquetas/metabolismo , Plaquetas/patología , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Micropartículas Derivadas de Células/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Exosomas/metabolismo , Microbioma Gastrointestinal , Humanos , Inmunidad , Inflamación , Sistema Musculoesquelético/metabolismo , Sistema Musculoesquelético/patología , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal , Sistema Urogenital/metabolismo , Sistema Urogenital/patología
17.
Am J Clin Nutr ; 115(2): 492-502, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34612491

RESUMEN

BACKGROUND: In Pakistan, the prevalence of stunting among children younger than 5 y has remained above WHO critical thresholds (≥30%) over the past 2 decades. OBJECTIVES: We hypothesized that an unconditional cash transfer (UCT) combined with lipid-based nutrient supplement (LNS) and/or social and behavior change communication (SBCC) will prevent stunting among children 6-23 mo of age. METHODS: This was a 4-arm, community-based cluster randomized controlled trial conducted in the district of Rahim Yar Khan, Pakistan. A total of 1729 children (UCT, n = 434; UCT + SBCC, n = 433; UCT + LNS, n = 430; and UCT + LNS + SBCC, n = 432) were enrolled at 6 mo of age and measured monthly for 18 mo until the age of 24 mo. RESULTS: At 24 mo of age, children who received UCT + LNS [rate ratio (RR): 0.85; 95% CI: 0.74, 0.97; P = 0.015) and UCT + LNS + SBCC (RR: 0.86; 95% CI: 0.77, 0.96; P = 0.007) had a significantly lower risk of being stunted compared with the UCT arm. No significant difference was noted among children who received UCT + SBCC (RR: 1.03; 95% CI: 0.91, 1.16; P = 0.675) in the risk of being stunted compared with the UCT arm. The pooled prevalence of stunting among children aged 6-23 mo was 41.7%, 44.8%, 38.5%, and 39.3% in UCT, UCT + SBCC, UCT + LNS, and UCT + LNS + SBCC, respectively. In pairwise comparisons, a significant impact on stunting among children in UCT + LNS (P = 0.029) and UCT + LNS + SBCC (P = <0.001) was noted compared with the UCT arm. CONCLUSIONS: UCT combined with LNS and UCT + LNS + SBCC were effective in reducing the prevalence of stunting among children aged 6-23 mo in marginalized populations. UCT + SBCC was not effective in reducing the child stunting prevalence. This trial was registered at clinicaltrials.gov as NCT03299218.


Asunto(s)
Terapia Conductista/métodos , Suplementos Dietéticos/economía , Conducta Alimentaria/psicología , Asistencia Alimentaria/economía , Trastornos del Crecimiento/prevención & control , Adulto , Análisis por Conglomerados , Femenino , Trastornos del Crecimiento/epidemiología , Humanos , Lactante , Lípidos/administración & dosificación , Masculino , Pakistán/epidemiología , Prevalencia
18.
J Extracell Biol ; 1(11): e66, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38939906

RESUMEN

Plasma extracellular vesicle (EV) number and composition are altered following myocardial infarction (MI), but to properly understand the significance of these changes it is essential to appreciate how the different isolation methods affect EV characteristics, proteome and sphingolipidome. Here, we compared plasma EV isolated from platelet-poor plasma from four healthy donors and six MI patients at presentation and 1-month post-MI using ultracentrifugation (UC), polyethylene glycol precipitation, acoustic trapping, size-exclusion chromatography (SEC) and immunoaffinity capture. The isolated EV were evaluated by Nanoparticle Tracking Analysis (NTA), Western blot, transmission electron microscopy (TEM), an EV-protein array, untargeted proteomics (LC-MS/MS) and targeted sphingolipidomics (LC-MS/MS). The application of the five different plasma EV isolation methods in patients presenting with MI showed that the choice of plasma EV isolation method influenced the ability to distinguish elevations in plasma EV concentration following MI, enrichment of EV-cargo (EV-proteins and sphingolipidomics) and associations with the size of the infarct determined by cardiac magnetic resonance imaging 6 months post-MI. Despite the selection bias imposed by each method, a core of EV-associated proteins and lipids was detectable using all approaches. However, this study highlights how each isolation method comes with its own idiosyncrasies and makes the comparison of data acquired by different techniques in clinical studies problematic.

19.
Biotechnol Appl Biochem ; 58(5): 353-62, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21995538

RESUMEN

Synthetic amorphous silica is gaining popularity as the material of choice in the fabrication of nanoparticles for use in imaging diagnostics, medical therapeutics, and tissue engineering because of its biocompatible nature. However, recent evidence suggests that silica nanoparticles (SiNPs) show a concentration- and size-dependent toxic effect that is cell specific. We investigated the direct influence of SiNP uptake on the vasodilator responses of rat aortic vessels, in vitro, using fabricated SiNPs of defined size (97 ± 7.60 and 197 ± 7.50 nm) and charge (positive and nonmodified). Dilator responses to cumulative doses of endothelial-dependent [acetylcholine (Ach); 0.01 µM-1.0 mM] and endothelial-independent (sodium nitroprusside; 0.01-10 µM) agonists were determined before and 30 Min after incubation in SiNPs (at 1.1 × 10(11) nanoparticles/mL). Acute exposure to SiNPs led to their rapid uptake by the lining endothelial cells (as verified by transmission electron microscopy). SiNP uptake had no significant influence on dilator responses, although a greater degree of attenuation was evident after uptake of the 100 nm and positively charged SiNPs (significant at the highest 1.0 mM Ach concentration between positive and nonmodified 200 nm SiNPs; P < 0.05). In summary, our findings suggest that SiNP surface interactions, rather than mass, affect vasodilator function of aortic vessels.


Asunto(s)
Aorta/fisiología , Materiales Biocompatibles/metabolismo , Ensayo de Materiales , Nanopartículas/química , Dióxido de Silicio/metabolismo , Animales , Materiales Biocompatibles/química , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Masculino , Nanopartículas/ultraestructura , Tamaño de la Partícula , Ratas , Ratas Wistar , Dióxido de Silicio/química , Vasodilatación
20.
Biomedicines ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201592

RESUMEN

Extracellular vesicles (EV) are a heterogeneous group of bilipid-enclosed envelopes that carry proteins, metabolites, RNA, DNA and lipids from their parent cell of origin. They mediate cellular communication to other cells in local tissue microenvironments and across organ systems. EV size, number and their biologically active cargo are often altered in response to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, which also have a strong inflammatory component. Here, we discuss the broad repertoire of EV produced by neutrophils, monocytes, macrophages, their precursor hematopoietic stem cells and discuss their effects on the innate immune system. We seek to understand the immunomodulatory properties of EV in cellular programming, which impacts innate immune cell differentiation and function. We further explore the possibilities of using EV as immune targeting vectors, for the modulation of the innate immune response, e.g., for tissue preservation during sterile injury such as myocardial infarction or to promote tissue resolution of inflammation and potentially tissue regeneration and repair.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA