Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 619(7970): 632-639, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37344599

RESUMEN

Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.


Asunto(s)
Neoplasias Colorrectales , Histona Demetilasas , Antígenos de Histocompatibilidad Menor , Caracteres Sexuales , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Ratones Transgénicos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Regulación hacia Arriba
2.
Nature ; 612(7940): 564-572, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477537

RESUMEN

Higher-order chromatin structure is important for the regulation of genes by distal regulatory sequences1,2. Structural variants (SVs) that alter three-dimensional (3D) genome organization can lead to enhancer-promoter rewiring and human disease, particularly in the context of cancer3. However, only a small minority of SVs are associated with altered gene expression4,5, and it remains unclear why certain SVs lead to changes in distal gene expression and others do not. To address these questions, we used a combination of genomic profiling and genome engineering to identify sites of recurrent changes in 3D genome structure in cancer and determine the effects of specific rearrangements on oncogene activation. By analysing Hi-C data from 92 cancer cell lines and patient samples, we identified loci affected by recurrent alterations to 3D genome structure, including oncogenes such as MYC, TERT and CCND1. By using CRISPR-Cas9 genome engineering to generate de novo SVs, we show that oncogene activity can be predicted by using 'activity-by-contact' models that consider partner region chromatin contacts and enhancer activity. However, activity-by-contact models are only predictive of specific subsets of genes in the genome, suggesting that different classes of genes engage in distinct modes of regulation by distal regulatory elements. These results indicate that SVs that alter 3D genome organization are widespread in cancer genomes and begin to illustrate predictive rules for the consequences of SVs on oncogene activation.


Asunto(s)
Variación Estructural del Genoma , Neoplasias , Proteínas Oncogénicas , Oncogenes , Humanos , Cromatina/genética , Reordenamiento Génico/genética , Variación Estructural del Genoma/genética , Neoplasias/genética , Neoplasias/patología , Oncogenes/genética , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Cromosomas Humanos/genética , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Modelos Genéticos
3.
Mol Cell ; 64(5): 967-981, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912097

RESUMEN

Recent evidence suggests that lncRNAs play an integral regulatory role in numerous functions, including determination of cellular identity. We determined global expression (RNA-seq) and genome-wide profiles (ChIP-seq) of histone post-translational modifications and p53 binding in human embryonic stem cells (hESCs) undergoing differentiation to define a high-confidence set of 40 lncRNAs, which are p53 transcriptional targets. We focused on lncRNAs highly expressed in pluripotent hESCs and repressed by p53 during differentiation to identify lncPRESS1 as a p53-regulated transcript that maintains hESC pluripotency in concert with core pluripotency factors. RNA-seq of hESCs depleted of lncPRESS1 revealed that lncPRESS1 controls a gene network that promotes pluripotency. Further, we found that lncPRESS1 physically interacts with SIRT6 and prevents SIRT6 chromatin localization, which maintains high levels of histone H3K56 and H3K9 acetylation at promoters of pluripotency genes. In summary, we describe a p53-regulated, pluripotency-specific lncRNA that safeguards the hESC state by disrupting SIRT6 activity.


Asunto(s)
Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Histonas/metabolismo , Células Madre Pluripotentes/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Cromatina/metabolismo , Células Madre Embrionarias/citología , Histona Desacetilasas , Histonas/genética , Humanos , Células Madre Pluripotentes/citología , Procesamiento Proteico-Postraduccional/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Proteína p53 Supresora de Tumor/genética
4.
Nature ; 542(7641): 362-366, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28178232

RESUMEN

Malignant neoplasms evolve in response to changes in oncogenic signalling. Cancer cell plasticity in response to evolutionary pressures is fundamental to tumour progression and the development of therapeutic resistance. Here we determine the molecular and cellular mechanisms of cancer cell plasticity in a conditional oncogenic Kras mouse model of pancreatic ductal adenocarcinoma (PDAC), a malignancy that displays considerable phenotypic diversity and morphological heterogeneity. In this model, stochastic extinction of oncogenic Kras signalling and emergence of Kras-independent escaper populations (cells that acquire oncogenic properties) are associated with de-differentiation and aggressive biological behaviour. Transcriptomic and functional analyses of Kras-independent escapers reveal the presence of Smarcb1-Myc-network-driven mesenchymal reprogramming and independence from MAPK signalling. A somatic mosaic model of PDAC, which allows time-restricted perturbation of cell fate, shows that depletion of Smarcb1 activates the Myc network, driving an anabolic switch that increases protein metabolism and adaptive activation of endoplasmic-reticulum-stress-induced survival pathways. Increased protein turnover renders mesenchymal sub-populations highly susceptible to pharmacological and genetic perturbation of the cellular proteostatic machinery and the IRE1-α-MKK4 arm of the endoplasmic-reticulum-stress-response pathway. Specifically, combination regimens that impair the unfolded protein responses block the emergence of aggressive mesenchymal subpopulations in mouse and patient-derived PDAC models. These molecular and biological insights inform a potential therapeutic strategy for targeting aggressive mesenchymal features of PDAC.


Asunto(s)
Mesodermo/patología , Neoplasias Pancreáticas/patología , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Estrés del Retículo Endoplásmico/genética , Femenino , Genes myc , Genes ras , Humanos , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Mesodermo/metabolismo , Ratones , Mosaicismo , Proteína Oncogénica p55(v-myc)/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SMARCB1/deficiencia , Proteína SMARCB1/metabolismo , Transcriptoma/genética , Gemcitabina
5.
Nucleic Acids Res ; 49(9): 5084-5094, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33877329

RESUMEN

DNA cytosine methylation in mammals modulates gene expression and chromatin accessibility. It also impacts mutation rates, via spontaneous oxidative deamination of 5-methylcytosine (5mC) to thymine. In most cases the resulting T:G mismatches are repaired, following T excision by one of the thymine DNA glycosylases, TDG or MBD4. We found that C-to-T mutations are enriched in the binding sites of CCAAT/enhancer binding proteins (CEBP). Within a CEBP site, the presence of a T:G mismatch increased CEBPß binding affinity by a factor of >60 relative to the normal C:G base pair. This enhanced binding to a mismatch inhibits its repair by both TDG and MBD4 in vitro. Furthermore, repair of the deamination product of unmethylated cytosine, which yields a U:G DNA mismatch that is normally repaired via uracil DNA glycosylase, is also inhibited by CEBPß binding. Passage of a replication fork over either a T:G or U:G mismatch, before repair can occur, results in a C-to-T mutation in one of the daughter duplexes. Our study thus provides a plausible mechanism for accumulation of C-to-T human somatic mutations.


Asunto(s)
Disparidad de Par Base , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Sitios de Unión , Proteínas Potenciadoras de Unión a CCAAT/química , Citosina/química , ADN/química , ADN/metabolismo , Reparación del ADN , Guanina/química , Humanos , Mutación , Unión Proteica , Dominios Proteicos , Timina/química
6.
Gastroenterology ; 161(1): 196-210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33745946

RESUMEN

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/tratamiento farmacológico , Carioferinas/antagonistas & inhibidores , Mutación , Inhibidores de Proteínas Quinasas/administración & dosificación , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Bases de Datos Genéticas , Células HCT116 , Células HT29 , Humanos , Indoles/administración & dosificación , Carioferinas/metabolismo , Ratones , Morfolinas/administración & dosificación , Piperazinas/administración & dosificación , Piridinas/administración & dosificación , Pirimidinas/administración & dosificación , Receptores Citoplasmáticos y Nucleares/metabolismo , Sulfonamidas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína Exportina 1
7.
Proc Natl Acad Sci U S A ; 113(9): E1296-305, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884185

RESUMEN

PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS. Using integrative cross-species gene expression analysis, we identified deregulated cell cycle and cytoskeleton organization as significantly perturbed biological pathways in PREX2 mutant tumors. Mechanistically, truncation of PREX2 activated its Rac1 guanine nucleotide exchange factor activity, abolished binding to PTEN and activated the PI3K (phosphatidyl inositol 3 kinase)/Akt signaling pathway. We further showed that PREX2 truncating mutations or PTEN deletion induces down-regulation of the tumor suppressor and cell cycle regulator CDKN1C (also known as p57(KIP2)). This down-regulation occurs, at least partially, through DNA hypomethylation of a differentially methylated region in chromosome 11 that is a known regulatory region for expression of the CDKN1C gene. Together, these findings identify PREX2 as a mediator of NRAS-mutant melanoma development that acts through the PI3K/PTEN/Akt pathway to regulate gene expression of a cell cycle regulator.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Melanoma Experimental/metabolismo , Mutación , Animales , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Melanoma Experimental/genética , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
8.
Hum Genet ; 135(5): 569-586, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27071622

RESUMEN

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV.


Asunto(s)
Genoma Humano , Impresión Genómica , Síndrome de Circulación Fetal Persistente/patología , Alveolos Pulmonares/anomalías , Venas Pulmonares/patología , Cromosomas Humanos Par 16/genética , Hibridación Genómica Comparativa , Femenino , Factores de Transcripción Forkhead/genética , Genes Letales , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Recién Nacido , Masculino , Linaje , Síndrome de Circulación Fetal Persistente/genética , Alveolos Pulmonares/patología , Eliminación de Secuencia
9.
Nature ; 468(7326): 927-32, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21164480

RESUMEN

Recognition of modified histone species by distinct structural domains within 'reader' proteins plays a critical role in the regulation of gene expression. Readers that simultaneously recognize histones with multiple marks allow transduction of complex chromatin modification patterns into specific biological outcomes. Here we report that chromatin regulator tripartite motif-containing 24 (TRIM24) functions in humans as a reader of dual histone marks by means of tandem plant homeodomain (PHD) and bromodomain (Bromo) regions. The three-dimensional structure of the PHD-Bromo region of TRIM24 revealed a single functional unit for combinatorial recognition of unmodified H3K4 (that is, histone H3 unmodified at lysine 4, H3K4me0) and acetylated H3K23 (histone H3 acetylated at lysine 23, H3K23ac) within the same histone tail. TRIM24 binds chromatin and oestrogen receptor to activate oestrogen-dependent genes associated with cellular proliferation and tumour development. Aberrant expression of TRIM24 negatively correlates with survival of breast cancer patients. The PHD-Bromo of TRIM24 provides a structural rationale for chromatin activation through a non-canonical histone signature, establishing a new route by which chromatin readers may influence cancer pathogenesis.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas Portadoras/metabolismo , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Acetilación , Neoplasias de la Mama/patología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular Tumoral , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Cristalografía por Rayos X , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Histonas/química , Humanos , Metilación , Análisis por Matrices de Proteínas , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Tasa de Supervivencia
10.
Nucleic Acids Res ; 42(1): 205-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24078252

RESUMEN

How tumor suppressor p53 selectively responds to specific signals, especially in normal cells, is poorly understood. We performed genome-wide profiling of p53 chromatin interactions and target gene expression in human embryonic stem cells (hESCs) in response to early differentiation, induced by retinoic acid, versus DNA damage, caused by adriamycin. Most p53-binding sites are unique to each state and define stimulus-specific p53 responses in hESCs. Differentiation-activated p53 targets include many developmental transcription factors and, in pluripotent hESCs, are bound by OCT4 and NANOG at chromatin enriched in both H3K27me3 and H3K4me3. Activation of these genes occurs with recruitment of p53 and H3K27me3-specific demethylases, UTX and JMJD3, to chromatin. In contrast, genes associated with cell migration and motility are bound by p53 specifically after DNA damage. Surveillance functions of p53 in cell death and cell cycle regulation are conserved in both DNA damage and differentiation. Comparative genomic analysis of p53-targets in mouse and human ESCs supports an inter-species divergence in p53 regulatory functions during evolution. Our findings expand the registry of p53-regulated genes to define p53-regulated opposition to pluripotency during early differentiation, a process highly distinct from stress-induced p53 response in hESCs.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Sitios de Unión , Línea Celular , Daño del ADN , Células Madre Embrionarias/citología , Genoma Humano , Histona Demetilasas/metabolismo , Histonas/metabolismo , Humanos , Ratones , Factores de Transcripción/metabolismo
11.
Clin Cancer Res ; 29(23): 4844-4852, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37747813

RESUMEN

PURPOSE: Chondrosarcomas are the most common primary bone tumor in adults. Isocitrate dehydrogenase 1 (IDH1) and IDH2 mutations are prevalent. We aimed to assess the clinico-genomic properties of IDH mutant versus IDH wild-type (WT) chondrosarcomas as well as alterations in other genes. EXPERIMENTAL DESIGN: We included 93 patients with conventional and dedifferentiated chondrosarcoma for which there were available clinical next-generation sequencing data. Clinical and genomic data were extracted and compared between IDH mutant and IDH WT chondrosarcomas and between TP53 mutant and TP53 WT chondrosarcomas. RESULTS: IDH1 and IDH2 mutations are prevalent in chondrosarcoma (50.5%), more common in chondrosarcomas arising in the extremities, associated with higher age at diagnosis, and more common in dedifferentiated chondrosarcomas compared with grades 1-3 conventional chondrosarcoma. There was no difference in survival based on IDH mutation in univariate and multivariate analyses. TP53 mutation was the next most prevalent (41.9%) and is associated with worse overall survival and metastasis-free survival in both univariate and multivariate analyses. TP53 mutation was also associated with higher risk of recurrence following curative-intent surgery and worse survival among patients that presented with de novo metastatic disease. CONCLUSIONS: IDH mutations are prevalent in chondrosarcoma though were not associated with survival outcomes in this cohort. TP53 mutations were the next most common alteration and were associated with worse outcomes.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , Adulto , Humanos , Mutación , Condrosarcoma/genética , Condrosarcoma/patología , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Huesos/patología , Genómica , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Proteína p53 Supresora de Tumor/genética
12.
Front Oncol ; 12: 997506, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248987

RESUMEN

Introduction and objective: Despite the improvements in management and treatment of chordomas over time, the risk of disease recurrence remains high. Consequently, there is a push to develop effective systemic therapeutics for newly diagnosed and recurrent disease. In order to tailor treatment for individual chordoma patients and develop effective surveillance strategies, suitable clinical biomarkers need to be identified. The objective of this study was to systematically review all prognostic biomarkers for chordomas reported to date in order to classify them according to localization, study design and statistical analysis. Methods: Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed published studies reporting biomarkers that correlated with clinical outcomes. We included time-to-event studies that evaluated biomarkers in skull base or spine chordomas. To be included in our review, the study must have analyzed the outcomes with univariate and/or multivariate methods (log-rank test or a Cox-regression model). Results: We included 68 studies, of which only 5 were prospective studies. Overall, 103 biomarkers were analyzed in 3183 patients. According to FDA classification, 85 were molecular biomarkers (82.5%) mainly located in nucleus and cytoplasm (48% and 27%, respectively). Thirty-four studies analyzed biomarkers with Cox-regression model. Within these studies, 32 biomarkers (31%) and 22 biomarkers (21%) were independent prognostic factors for PFS and OS, respectively. Conclusion: Our analysis identified a list of 13 biomarkers correlating with tumor control rates and survival. The future point will be gathering all these results to guide the clinical validation for a chordoma biomarker panel. Our identified biomarkers have strengths and weaknesses according to FDA's guidelines, some are affordable, have a low-invasive collection method and can be easily measured in any health care setting (RDW and D-dimer), but others molecular biomarkers need specialized assay techniques (microRNAs, PD-1 pathway markers, CDKs and somatic chromosome deletions were more chordoma-specific). A focused list of biomarkers that correlate with local recurrence, metastatic spread and survival might be a cornerstone to determine the need of adjuvant therapies.

13.
NPJ Precis Oncol ; 6(1): 89, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456685

RESUMEN

Activation-induced cytidine deaminase, AICDA or AID, is a driver of somatic hypermutation and class-switch recombination in immunoglobulins. In addition, this deaminase belonging to the APOBEC family may have off-target effects genome-wide, but its effects at pan-cancer level are not well elucidated. Here, we used different pan-cancer datasets, totaling more than 50,000 samples analyzed by whole-genome, whole-exome, or targeted sequencing. AID mutations are present at pan-cancer level with higher frequency in hematological cancers and higher presence at transcriptionally active TAD domains. AID synergizes initial hotspot mutations by a second composite mutation. AID mutational load was found to be independently associated with a favorable outcome in immune-checkpoint inhibitors (ICI) treated patients across cancers after analyzing 2000 samples. Finally, we found that AID-related neoepitopes, resulting from mutations at more frequent hotspots if compared to other mutational signatures, enhance CXCL13/CCR5 expression, immunogenicity, and T-cell exhaustion, which may increase ICI sensitivity.

14.
J Immunother ; 45(8): 374-378, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35943386

RESUMEN

The aim of this study is to evaluate the outcomes and tolerance of immune checkpoint inhibitors (ICIs) for patients with recurrent chordoma. We reviewed the records of 17 patients with recurrent chordomas who received ICIs for progressing disease as part of their treatment between 2016 and 2020. Response was assessed using response evaluation criteria in solid tumors 1.1 criteria. The Kaplan-Meier method was used to estimate the duration of response, progression-free survival (PFS), and overall survival (OS). Clinical benefit was defined as having stable disease (SD), a partial response, or a complete response. The median follow-up from the start of ICIs was 29 months [interquartile range (IQR): 13-35 m]. The majority received pembrolizumab (n=9, 53%), and the median number of cycles delivered was 8 (IQR: 7-12). The 1-year OS was 87%, and the 1-year PFS was 56% with a median PFS of 14 months (95% CI, 5-17 mo). After ICI initiation, most patients (n=15, 88%) had clinical benefit consisting of a complete response (n=1, 6%), partial response (n=3, 18%), and stable disease (n=11, 65%). Among all responders (n=15), the median duration of response was 12 months. Toxicities were limited: 2 (12%) patients having grade 3/4 immune-related toxicities (colitis, grade 3; myocarditis, grade 4). We observed a high rate of clinical benefit and favorable durability from ICI use for patients with recurrent chordoma. These data provide support for the integration of ICIs as a standard first-line systemic therapy option for patients with recurrent chordoma. Prospective studies are warranted to further evaluate efficacy and enhance response rates.


Asunto(s)
Antineoplásicos Inmunológicos , Cordoma , Antineoplásicos Inmunológicos/efectos adversos , Cordoma/inducido químicamente , Cordoma/diagnóstico , Cordoma/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inmunoterapia , Recurrencia Local de Neoplasia , Estudios Retrospectivos
15.
Hepatology ; 52(3): 1023-32, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20564353

RESUMEN

UNLABELLED: The p53 family of proteins regulates the expression of target genes that promote cell cycle arrest and apoptosis, which may be linked to cellular growth control as well as tumor suppression. Within the p53 family, p53 and the transactivating p73 isoform (TA-p73) have hepatic-specific functions in development and tumor suppression. Here, we determined TA-p73 interactions with chromatin in the adult mouse liver and found forkhead box O3 (Foxo3) to be one of 158 gene targets. Global profiling of hepatic gene expression in the regenerating liver versus the quiescent liver revealed specific, functional categories of genes regulated over the time of regeneration. Foxo3 is the most responsive gene among transcription factors with altered expression during regenerative cellular proliferation. p53 and TA-p73 bind a Foxo3 p53 response element (p53RE) and maintain active expression in the quiescent liver. During regeneration of the liver, the binding of p53 and TA-p73, the recruitment of acetyltransferase p300, and the active chromatin structure of Foxo3 are disrupted along with a loss of Foxo3 expression. In agreement with the loss of Foxo3 transcriptional activation, a decrease in histone activation marks (dimethylated histone H3 at lysine 4, acetylated histone H3 at lysine 14, and acetylated H4) at the Foxo3 p53RE was detected after partial hepatectomy in mice. These parameters of Foxo3 regulation are reestablished with the completion of liver growth and regeneration and support a temporary suspension of p53 and TA-p73 regulatory functions in normal cells during tissue regeneration. p53-dependent and TA-p73-dependent activation of Foxo3 was also observed in mouse embryonic fibroblasts and in mouse hepatoma cells overexpressing p53, TA-p73alpha, and TA-p73beta isoforms. CONCLUSION: p53 and p73 directly bind and activate the expression of the Foxo3 gene in the adult mouse liver and murine cell lines. p53, TA-p73, and p300 binding and Foxo3 expression decrease during liver regeneration, and this suggests a critical growth control mechanism mediated by these transcription factors in vivo.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Regeneración Hepática/fisiología , Hígado/metabolismo , Proteínas Nucleares/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Proteína Forkhead Box O3 , Hepatectomía , Histonas/metabolismo , Hígado/patología , Hígado/cirugía , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Factores de Transcripción p300-CBP/metabolismo
16.
Nat Genet ; 52(3): 294-305, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32024999

RESUMEN

Chromatin is folded into successive layers to organize linear DNA. Genes within the same topologically associating domains (TADs) demonstrate similar expression and histone-modification profiles, and boundaries separating different domains have important roles in reinforcing the stability of these features. Indeed, domain disruptions in human cancers can lead to misregulation of gene expression. However, the frequency of domain disruptions in human cancers remains unclear. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we analyzed 288,457 somatic structural variations (SVs) to understand the distributions and effects of SVs across TADs. Notably, SVs can lead to the fusion of discrete TADs, and complex rearrangements markedly change chromatin folding maps in the cancer genomes. Notably, only 14% of the boundary deletions resulted in a change in expression in nearby genes of more than twofold.


Asunto(s)
Cromatina/genética , Reordenamiento Génico/genética , Genoma Humano/genética , Variación Estructural del Genoma , Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Humanos
17.
Nat Genet ; 52(11): 1178-1188, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33020667

RESUMEN

Somatic mutations in driver genes may ultimately lead to the development of cancer. Understanding how somatic mutations accumulate in cancer genomes and the underlying factors that generate somatic mutations is therefore crucial for developing novel therapeutic strategies. To understand the interplay between spatial genome organization and specific mutational processes, we studied 3,000 tumor-normal-pair whole-genome datasets from 42 different human cancer types. Our analyses reveal that the change in somatic mutational load in cancer genomes is co-localized with topologically-associating-domain boundaries. Domain boundaries constitute a better proxy to track mutational load change than replication timing measurements. We show that different mutational processes lead to distinct somatic mutation distributions where certain processes generate mutations in active domains, and others generate mutations in inactive domains. Overall, the interplay between three-dimensional genome organization and active mutational processes has a substantial influence on the large-scale mutation-rate variations observed in human cancers.


Asunto(s)
Cromatina/química , Genoma Humano , Mutación , Neoplasias/genética , Línea Celular Tumoral , Cromosomas Humanos X/genética , Reparación de la Incompatibilidad de ADN , Análisis Mutacional de ADN , ADN de Neoplasias , Conjuntos de Datos como Asunto , Femenino , Humanos , Masculino , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Inactivación del Cromosoma X
19.
Nucleus ; 8(2): 182-187, 2017 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-28085555

RESUMEN

Evolutionary conserved transcription factor SOX9, encoded by the dosage sensitive SOX9 gene on chromosome 17q24.3, plays an important role in development of multiple organs, including bones and testes. Heterozygous point mutations and genomic copy-number variant (CNV) deletions involving SOX9 have been reported in patients with campomelic dysplasia (CD), a skeletal malformation syndrome often associated with male-to-female sex reversal. Balanced and unbalanced structural genomic variants with breakpoints mapping up to 1.3 Mb up- and downstream to SOX9 have been described in patients with milder phenotypes, including acampomelic campomelic dysplasia, sex reversal, and Pierre Robin sequence. Based on the localization of breakpoints of genomic rearrangements causing different phenotypes, 5 genomic intervals mapping upstream to SOX9 have been defined. We have analyzed the publically available database of high-throughput chromosome conformation capture (Hi-C) in multiple cell lines in the genomic regions flanking SOX9. Consistent with the literature data, chromatin domain boundaries in the SOX9 locus exhibit conservation across species and remain largely constant across multiple cell types. Interestingly, we have found that chromatin folding domains in the SOX9 locus associate with the genomic intervals harboring real and putative regulatory elements of SOX9, implicating that variation in intra-domain interactions may be critical for dynamic regulation of SOX9 expression in a cell type-specific fashion. We propose that tissue-specific enhancers for other transcription factor genes may similarly utilize chromatin folding sub-domains in gene regulation.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Factor de Transcripción SOX9/genética , Displasia Campomélica/genética , Línea Celular , Cromatina/genética , Cromosomas Humanos/genética , Regulación de la Expresión Génica , Humanos
20.
Nat Genet ; 49(3): 349-357, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28135248

RESUMEN

Cancer cells survive cellular crisis through telomere maintenance mechanisms. We report telomere lengths in 18,430 samples, including tumors and non-neoplastic samples, across 31 cancer types. Telomeres were shorter in tumors than in normal tissues and longer in sarcomas and gliomas than in other cancers. Among 6,835 cancers, 73% expressed telomerase reverse transcriptase (TERT), which was associated with TERT point mutations, rearrangements, DNA amplifications and transcript fusions and predictive of telomerase activity. TERT promoter methylation provided an additional deregulatory TERT expression mechanism. Five percent of cases, characterized by undetectable TERT expression and alterations in ATRX or DAXX, demonstrated elongated telomeres and increased telomeric repeat-containing RNA (TERRA). The remaining 22% of tumors neither expressed TERT nor harbored alterations in ATRX or DAXX. In this group, telomere length positively correlated with TP53 and RB1 mutations. Our analysis integrates TERT abnormalities, telomerase activity and genomic alterations with telomere length in cancer.


Asunto(s)
Neoplasias/genética , Mutación Puntual/genética , Telómero/genética , Metilación de ADN/genética , Glioma/genética , Humanos , Regiones Promotoras Genéticas/genética , Proteínas de Unión a Retinoblastoma/genética , Sarcoma/genética , Telomerasa/genética , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA