Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 32(3): 449-458, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35135873

RESUMEN

Genetic drift can dramatically change allele frequencies in small populations and lead to reduced levels of genetic diversity, including loss of segregating variants. However, there is a shortage of quantitative studies of how genetic diversity changes over time in natural populations, especially on genome-wide scales. Here, we analyzed whole-genome sequences from 76 wolves of a highly inbred Scandinavian population, founded by only one female and two males, sampled over a period of 30 yr. We obtained chromosome-level haplotypes of all three founders and found that 10%-24% of their diploid genomes had become lost after about 20 yr of inbreeding (which approximately corresponds to five generations). Lost haplotypes spanned large genomic regions, as expected from the amount of recombination during this limited time period. Altogether, 160,000 SNP alleles became lost from the population, which may include adaptive variants as well as wild-type alleles masking recessively deleterious alleles. Although not sampled, we could indirectly infer that the two male founders had megabase-sized runs of homozygosity and that all three founders showed significant haplotype sharing, meaning that there were on average only 4.2 unique haplotypes in the six copies of each autosome that the founders brought into the population. This violates the assumption of unrelated founder haplotypes often made in conservation and management of endangered species. Our study provides a novel view of how whole-genome resequencing of temporally stratified samples can be used to visualize and directly quantify the consequences of genetic drift in a small inbred population.


Asunto(s)
Lobos , Alelos , Animales , Femenino , Frecuencia de los Genes , Variación Genética , Genética de Población , Haplotipos , Endogamia , Masculino , Lobos/genética
2.
Proc Natl Acad Sci U S A ; 117(48): 30531-30538, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199605

RESUMEN

The ongoing recovery of terrestrial large carnivores in North America and Europe is accompanied by intense controversy. On the one hand, reestablishment of large carnivores entails a recovery of their most important ecological role, predation. On the other hand, societies are struggling to relearn how to live with apex predators that kill livestock, compete for game species, and occasionally injure or kill people. Those responsible for managing these species and mitigating conflict often lack fundamental information due to a long-standing challenge in ecology: How do we draw robust population-level inferences for elusive animals spread over immense areas? Here we showcase the application of an effective tool for spatially explicit tracking and forecasting of wildlife population dynamics at scales that are relevant to management and conservation. We analyzed the world's largest dataset on carnivores comprising more than 35,000 noninvasively obtained DNA samples from over 6,000 individual brown bears (Ursus arctos), gray wolves (Canis lupus), and wolverines (Gulo gulo). Our analyses took into account that not all individuals are detected and, even if detected, their fates are not always known. We show unequivocal quantitative evidence of large carnivore recovery in northern Europe, juxtaposed with the finding that humans are the single-most important factor driving the dynamics of these apex predators. We present maps and forecasts of the spatiotemporal dynamics of large carnivore populations, transcending national boundaries and management regimes.


Asunto(s)
Genética de Población , Dinámica Poblacional , Conducta Predatoria , Algoritmos , Animales , Animales Salvajes , Geografía , Modelos Teóricos , Análisis Espacial
3.
Proc Biol Sci ; 288(1948): 20210207, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33823674

RESUMEN

Age at first reproduction constitutes a key life-history trait in animals and is evolutionarily shaped by fitness benefits and costs of delayed versus early reproduction. The understanding of how intrinsic and extrinsic changes affects age at first reproduction is crucial for conservation and management of threatened species because of its demographic effects on population growth and generation time. For a period of 40 years in the Scandinavian wolf (Canis lupus) population, including the recolonization phase, we estimated age at first successful reproduction (pup survival to at least three weeks of age) and examined how the variation among individuals was explained by sex, population size (from 1 to 74 packs), primiparous or multiparous origin, reproductive experience of the partner and inbreeding. Median age at first reproduction was 3 years for females (n = 60) and 2 years for males (n = 74), and ranged between 1 and 8-10 years of age (n = 297). Female age at first reproduction decreased with increasing population size, and increased with higher levels of inbreeding. The probability for males to reproduce later first decreased, reaching its minimum when the number of territories approached 40-60, and then increased with increasing population size. Inbreeding for males and reproductive experience of parents and partners for both sexes had overall weak effects on age at first reproduction. These results allow for more accurate parameter estimates when modelling population dynamics for management and conservation of small and vulnerable wolf populations, and show how humans through legal harvest and illegal hunting influence an important life-history trait like age at first reproduction.


Asunto(s)
Lobos , Animales , Especies en Peligro de Extinción , Femenino , Endogamia , Masculino , Densidad de Población , Dinámica Poblacional , Reproducción
4.
Exp Appl Acarol ; 83(1): 131-146, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33242188

RESUMEN

Cloth-dragging is the most widely-used method for collecting and counting ticks, but there are few studies of its reliability. By using cloth-dragging, we applied a replicated line transects survey method, in two areas in Sweden with different Ixodes ricinus tick-densities (low at Grimsö and high at Bogesund) to evaluate developmental stage specific repeatability, agreement and precision in estimates of tick abundance. 'Repeatability' was expressed as the Intraclass Correlation Coefficient (ICC), 'agreement' with the Total Deviation Index (TDI) and 'precision' by the coefficient of variation (CV) for a given dragging distance. Repeatability (ICC) and agreement (TDI) were higher for the most abundant instar (nymphs) and in the area of higher abundance. At Bogesund tick counts were higher than at Grimsö and so also repeatability, with fair to substantial ICC estimates between 0.22 and 0.75, and TDI ranged between 1 and 44.5 counts of difference (thus high to moderate agreement). At Grimsö, ICC was poor to moderate and ranged between 0 and 0.59, whereas TDI remained low with estimates lower or equal to 1 count (thus high agreement). Despite a 100-fold lower abundance at Grimsö, the same level of precision for nymphs could be achieved with a 70% increase of dragging effort. We conclude that the cloth-dragging technique is useful for surveying ticks' and primarily to estimate abundance of the nymphal stage, whereas it rarely will be recommended for larvae and adults.


Asunto(s)
Ixodes , Animales , Ninfa , Reproducibilidad de los Resultados , Estaciones del Año , Encuestas y Cuestionarios , Suecia
5.
J Anim Ecol ; 86(1): 43-54, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27559712

RESUMEN

For socially monogamous species, breeder bond dissolution has important consequences for population dynamics, but the extent to which extrinsic or intrinsic population factors causes pair dissolution remain poorly understood, especially among carnivores. Using an extensive life-history data set, a survival analysis and competing risks framework, we examined the fate of 153 different wolf (Canis lupus) pairs in the recolonizing Scandinavian wolf population, during 14 winters of snow tracking and DNA monitoring. Wolf pair dissolution was generally linked to a mortality event and was strongly affected by extrinsic (i.e. anthropogenic) causes. No divorce was observed, and among the pair dissolution where causes have been identified, death of one or both wolves was always involved. Median time from pair formation to pair dissolution was three consecutive winters (i.e. approximately 2 years). Pair dissolution was mostly human-related, primarily caused by legal control actions (36·7%), verified poaching (9·2%) and traffic-related causes (2·1%). Intrinsic factors, such as disease and age, accounted for only 7·7% of pair dissolutions. The remaining 44·3% of dissolution events were from unknown causes, but we argue that a large portion could be explained by an additional source of human-caused mortality, cryptic poaching. Extrinsic population factors, such as variables describing the geographical location of the pair, had a stronger effect on risk of pair dissolution compared to anthropogenic landscape characteristics. Population intrinsic factors, such as the inbreeding coefficient of the male pair member, had a negative effect on pair bond duration. The mechanism behind this result remains unknown, but might be explained by lower survival of inbred males or more complex inbreeding effects mediated by behaviour. Our study provides quantitative estimates of breeder bond duration in a social carnivore and highlights the effect of extrinsic (i.e. anthropogenic) and intrinsic factors (i.e. inbreeding) involved in wolf pair bond duration. Unlike the effects of intrinsic and extrinsic factors that are commonly reported on individual survival or population growth, here we provide quantitative estimates of their potential effect on the social unit of the population, the wolf pair.


Asunto(s)
Conservación de los Recursos Naturales , Apareamiento , Lobos/fisiología , Animales , Femenino , Longevidad , Masculino , Noruega , Dinámica Poblacional , Crecimiento Demográfico , Estaciones del Año , Suecia
6.
Mol Ecol ; 25(19): 4745-56, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27497431

RESUMEN

Natural populations are becoming increasingly fragmented which is expected to affect their viability due to inbreeding depression, reduced genetic diversity and increased sensitivity to demographic and environmental stochasticity. In small and highly inbred populations, the introduction of only a few immigrants may increase vital rates significantly. However, very few studies have quantified the long-term success of immigrants and inbred individuals in natural populations. Following an episode of natural immigration to the isolated, severely inbred Scandinavian wolf (Canis lupus) population, we demonstrate significantly higher pairing and breeding success for offspring to immigrants compared to offspring from native, inbred pairs. We argue that inbreeding depression is the underlying mechanism for the profound difference in breeding success. Highly inbred wolves may have lower survival during natal dispersal as well as competitive disadvantage to find a partner. Our study is one of the first to quantify and compare the reproductive success of first-generation offspring from migrants vs. native, inbred individuals in a natural population. Indeed, our data demonstrate the profound impact single immigrants can have in small, inbred populations, and represent one of very few documented cases of genetic rescue in a population of large carnivores.


Asunto(s)
Genética de Población , Depresión Endogámica , Lobos/genética , Distribución Animal , Animales , Variación Genética , Reproducción , Países Escandinavos y Nórdicos
7.
Am Nat ; 183(1): 62-73, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24334736

RESUMEN

Intralocus sexual conflict (ISC) occurs when males and females have different adaptive peaks but are constrained from evolving sexual dimorphism because of shared genes. Implications of this conflict on evolutionary dynamics in wild populations have not been investigated in detail. In comprehensive analyses of selection, heritability, and genetic correlations, we found evidence for an ISC over wing length, a key trait for flight performance and migration, in a long-term study of wild great reed warblers (Acrocephalus arundinaceus). We found moderate sexual dimorphism, high heritability, moderate sexually antagonistic selection, and strong positive cross-sex genetic correlation in wing length, together supporting the presence of ISC. A negative genetic correlation between male wing length and female fitness indicated that females inheriting alleles for longer wings from their male relatives also inherited lower fitness. Moreover, cross-sex genetic correlations imposed constraint on the predicted microevolutionary trajectory of wing length (based on selection gradients), especially in females where the predicted response was reversed. The degree of sexual dimorphism in wing length did not change over time, suggesting no sign of conflict resolution. Our study provides novel insight into how an ISC over a fitness trait can affect microevolution in a wild population under natural selection.


Asunto(s)
Pájaros Cantores/anatomía & histología , Alas de Animales/anatomía & histología , Migración Animal , Animales , Conducta Alimentaria , Femenino , Variación Genética , Masculino , Selección Genética , Caracteres Sexuales , Pájaros Cantores/fisiología , Suecia
8.
Ecol Evol ; 13(7): e10236, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37415640

RESUMEN

Scavenging is an important part of food acquisition for many carnivore species that switch between scavenging and predation. In landscapes with anthropogenic impact, humans provide food that scavenging species can utilize. We quantified the magnitude of killing versus scavenging by gray wolves (Canis lupus) in Scandinavia where humans impact the ecosystem through hunter harvest, land use practices, and infrastructure. We investigated the cause of death of different animals utilized by wolves, and examined how the proportion of their consumption time spent scavenging was influenced by season, wolf social affiliation, level of inbreeding, density of moose (Alces alces) as their main prey, density of brown bear (Ursus arctos) as an intraguild competitor, and human density. We used data from 39 GPS-collared wolves covering 3198 study days (2001-2019), including 14,205 feeding locations within space-time clusters, and 1362 carcasses utilized by wolves. Most carcasses were wolf-killed (80.5%) while a small part had died from other natural causes (1.9%). The remaining had either anthropogenic mortality causes (4.7%), or the cause of death was unknown (12.9%). Time spent scavenging was higher during winter than during summer and autumn. Solitary wolves spent more time scavenging than pack-living individuals, likely because individual hunting success is lower than pack success. Scavenging time increased with the mean inbreeding coefficient of the adult wolves, possibly indicating that more inbred individuals resort to scavenging, which requires less body strength. There was weak evidence for competition between wolves and brown bears as well as a positive relationship between human density and time spent scavenging. This study shows how both intrinsic and extrinsic factors drive wolf scavenging behavior, and that despite a high level of inbreeding and access to carrion of anthropogenic origin, wolves mainly utilized their own kills.

9.
iScience ; 26(8): 107307, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37559898

RESUMEN

The Sicilian wolf remained isolated in Sicily from the end of the Pleistocene until its extermination in the 1930s-1960s. Given its long-term isolation on the island and distinctive morphology, the genetic origin of the Sicilian wolf remains debated. We sequenced four nuclear genomes and five mitogenomes from the seven existing museum specimens to investigate the Sicilian wolf ancestry, relationships with extant and extinct wolves and dogs, and diversity. Our results show that the Sicilian wolf is most closely related to the Italian wolf but carries ancestry from a lineage related to European Eneolithic and Bronze Age dogs. The average nucleotide diversity of the Sicilian wolf was half of the Italian wolf, with 37-50% of its genome contained in runs of homozygosity. Overall, we show that, by the time it went extinct, the Sicilian wolf had high inbreeding and low-genetic diversity, consistent with a population in an insular environment.

10.
Oncogenesis ; 11(1): 34, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729105

RESUMEN

Retinoblastoma is a rare, intraocular paediatric cancer that originates in the neural retina and is most frequently caused by bi-allelic loss of RB1 gene function. Other oncogenic mutations, such as amplification and increased expression of the MYCN gene, have been found even with proficient RB1 function. In this study, we investigated whether MYCN over-expression can drive carcinogenesis independently of RB1 loss-of-function mutations. The aim was to elucidate the events that result in carcinogenesis and identify the cancer cell-of-origin. We used the chicken retina, a well-established model for studying retinal neurogenesis, and established human embryonic stem cell-derived retinal organoids as model systems. We over-expressed MYCN by electroporation of piggyBac genome-integrating expression vectors. We found that over-expression of MYCN induced tumorigenic growth with high frequency in RB1-proficient chicken retinas and human organoids. In both systems, the tumorigenic cells expressed markers for undifferentiated cone photoreceptor/horizontal cell progenitors. The over-expression resulted in metastatic retinoblastoma within 7-9 weeks in chicken. Cells expressing MYCN could be grown in vitro and, when orthotopically injected, formed tumours that infiltrated the sclera and optic nerve and expressed markers for cone progenitors. Investigation of the tumour cell phenotype determined that the potential for neoplastic growth was embryonic stage-dependent and featured a cell-specific resistance to apoptosis in the cone/horizontal cell lineage, but not in ganglion or amacrine cells. We conclude that MYCN over-expression is sufficient to drive tumorigenesis and that a cell-specific resistance to apoptosis in the cone/horizontal cell lineage mediates the cancer phenotype.

11.
Ecol Evol ; 11(17): 11739-11748, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34522337

RESUMEN

Large carnivore feeding ecology plays a crucial role for management and conservation for predators and their prey. One of the keys to this kind of research is to identify the species composition in the predator diet, for example, prey determination from scat content. DNA-based methods applied to detect prey in predators' scats are viable alternatives to traditional macroscopic approaches, showing an increased reliability and higher prey detection rate. Here, we developed a molecular method for prey species identification in wolf (Canis lupus) scats using multiple species-specific marker loci on the cytochrome b gene for 18 target species. The final panel consisted of 80 assays, with a minimum of four markers per target species, and that amplified specifically when using a high-throughput Nanofluidic array technology (Fluidigm Inc.). As a practical example, we applied the method to identify target prey species DNA in 80 wolf scats collected in Sweden. Depending on the number of amplifying markers required to obtain a positive species call in a scat, the success in determining at least one prey species from the scats ranged from 44% to 92%. Although we highlight the need to evaluate the optimal number of markers for sensitive target species detection, the developed method is a fast and cost-efficient tool for prey identification in wolf scats and it also has the potential to be further developed and applied to other areas and large carnivores as well.

12.
Anim Reprod Sci ; 226: 106693, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33476906

RESUMEN

Improved knowledge about reproductive patterns and potential in male wolves (i.e., testicular development and size relative to age, pubertal age, and seasonal effects) is needed for evaluation and monitoring of reproductive outcomes in populations. Reproductive organs from 215 male wolves, culled as a result of licensed hunting, protective culling or from carcasses found were examined. The testes and epididymis were weighed and measured. There were biopsy samples collected from the testes and the cauda epididymis for histological determinations if there were spermatozoa in tissues collected. There were reproductive tissue analyses of 197 males while there were separate evaluations of tissues from ten cryptorchid animals. Juvenile wolves (< 1 year, n = 47) had a lesser body mass and mean testes mass than subadult (1-2 years, n = 71) and adult (>2 years, n = 79) males. Season also affected testicular characteristics of structures evaluated with subadult and adult males having a lesser mass during summer months (May-August). Of the 197 males, 70 % had spermatozoa in the seminiferous tubules and the cauda epididymis and were classified as being 'potentially fertile' when tissues were collected, while 22 % were classified as being non-fertile (no spermatozoa, including males that were pre-pubertal) and tissues of 8% could not be evaluated. When testes mass was greater, there was a greater likelihood that spermatozoa were present. There were seven of the ten cryptorchid males of the unilateral type. These testicular and epididymal findings will be useful for evaluating the reproductive potential and management of wolves in Scandinavia.


Asunto(s)
Envejecimiento/fisiología , Criptorquidismo/veterinaria , Espermatozoides/fisiología , Testículo/anatomía & histología , Lobos/anatomía & histología , Lobos/fisiología , Animales , Masculino , Noruega , Maduración Sexual , Suecia
13.
Proc Biol Sci ; 277(1692): 2361-9, 2010 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-20335216

RESUMEN

Wing length is a key character for essential behaviours related to bird flight such as migration and foraging. In the present study, we initiate the search for the genes underlying wing length in birds by studying a long-distance migrant, the great reed warbler (Acrocephalus arundinaceus). In this species wing length is an evolutionary interesting trait with pronounced latitudinal gradient and sex-specific selection regimes in local populations. We performed a quantitative trait locus (QTL) scan for wing length in great reed warblers using phenotypic, genotypic, pedigree and linkage map data from our long-term study population in Sweden. We applied the linkage analysis mapping method implemented in GridQTL (a new web-based software) and detected a genome-wide significant QTL for wing length on chromosome 2, to our knowledge, the first detected QTL in wild birds. The QTL extended over 25 cM and accounted for a substantial part (37%) of the phenotypic variance of the trait. A genome scan for tarsus length (a body-size-related trait) did not show any signal, implying that the wing-length QTL on chromosome 2 was not associated with body size. Our results provide a first important step into understanding the genetic architecture of avian wing length, and give opportunities to study the evolutionary dynamics of wing length at the locus level.


Asunto(s)
Modelos Genéticos , Sitios de Carácter Cuantitativo , Pájaros Cantores/anatomía & histología , Tarso Animal/anatomía & histología , Alas de Animales/anatomía & histología , Animales , Mapeo Cromosómico , Femenino , Vuelo Animal/fisiología , Estudios Longitudinales , Masculino , Linaje , Pájaros Cantores/genética , Suecia
14.
Mol Ecol ; 19(5): 851-5, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20102512

RESUMEN

A recent study by Väli et al. (2008) highlights that microsatellites will often provide a poor prediction of the genome-wide nucleotide diversity of wild populations, but does not fully explain why. To clarify and stress the importance of identity disequilibrium and marker variability for correlations between multilocus heterozygosity and genome-wide genetic variability, we performed a simple simulation with different types of markers, corresponding to microsatellites and SNPs, in populations with different inbreeding history. The importance of identity disequilibrium was apparent for both markers and there was a clear impact of marker variability.


Asunto(s)
Variación Genética , Genética de Población , Repeticiones de Microsatélite , Modelos Genéticos , Animales , Simulación por Computador , Conservación de los Recursos Naturales , Heterocigoto , Endogamia , Polimorfismo de Nucleótido Simple
15.
Sci Rep ; 9(1): 6526, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31024020

RESUMEN

Natal habitat preference induction (NHPI) occurs when characteristics of the natal habitat influence the future habitat selection of an animal. However, the influence of NHPI after the dispersal phase has received remarkably little attention. We tested whether exposure to humans in the natal habitat helps understand why some adult wolves Canis lupus may approach human settlements more than other conspecifics, a question of both ecological and management interest. We quantified habitat selection patterns within home ranges using resource selection functions and GPS data from 21 wolf pairs in Scandinavia. We identified the natal territory of each wolf with genetic parental assignment, and we used human-related characteristics within the natal territory to estimate the degree of anthropogenic influence in the early life of each wolf. When the female of the adult wolf pair was born in an area with a high degree of anthropogenic influence, the wolf pair tended to select areas further away from humans, compared to wolf pairs from natal territories with a low degree of anthropogenic influence. Yet the pattern was statistically weak, we suggest that our methodological approach can be useful in other systems to better understand NHPI and to inform management  about human-wildlife interactions.


Asunto(s)
Ecosistema , Lobos/fisiología , Animales , Conducta , Sistemas de Información Geográfica , Geografía , Humanos , Modelos Teóricos , Análisis de Componente Principal , Países Escandinavos y Nórdicos
16.
Nat Ecol Evol ; 2(1): 124-131, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29158554

RESUMEN

Inbreeding (mating between relatives) is a major concern for conservation as it decreases individual fitness and can increase the risk of population extinction. We used whole-genome resequencing of 97 grey wolves (Canis lupus) from the highly inbred Scandinavian wolf population to identify 'identical-by-descent' (IBD) chromosome segments as runs of homozygosity (ROH). This gave the high resolution required to precisely measure realized inbreeding as the IBD fraction of the genome in ROH (F ROH). We found a striking pattern of complete or near-complete homozygosity of entire chromosomes in many individuals. The majority of individual inbreeding was due to long IBD segments (>5 cM) originating from ancestors ≤10 generations ago, with 10 genomic regions showing very few ROH and forming candidate regions for containing loci contributing strongly to inbreeding depression. Inbreeding estimated with an extensive pedigree (F P) was strongly correlated with realized inbreeding measured with the entire genome (r 2 = 0.86). However, inbreeding measured with the whole genome was more strongly correlated with multi-locus heterozygosity estimated with as few as 500 single nucleotide polymorphisms, and with F ROH estimated with as few as 10,000 single nucleotide polymorphisms, than with F P. These results document in fine detail the genomic consequences of intensive inbreeding in a population of conservation concern.


Asunto(s)
Genoma , Endogamia , Lobos/genética , Animales , Noruega , Polimorfismo de Nucleótido Simple , Suecia
17.
R Soc Open Sci ; 5(12): 181379, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30662744

RESUMEN

Natal dispersal is an important mechanism for the viability of populations. The influence of local conditions or experience gained in the natal habitat could improve fitness if dispersing individuals settle in an area with similar habitat characteristics. This process, defined as 'natal habitat-biased dispersal' (NHBD), has been used to explain distribution patterns in large carnivores, but actual studies evaluating it are rare. We tested whether grey wolf Canis lupus territory establishment was influenced by the habitat characteristics of the natal territory using the long-term monitoring of the Scandinavian wolf population. We paired the locations of natal and established territories, accounted for available habitats along the dispersing route, and compared their habitat characteristics for 271 wolves during 1998-2012. Wolves with the shortest dispersal distances established in natal-like habitat types more than expected by chance, whereas wolves that dispersed longer distances did not show NHBD. The pattern was consistent for male and female wolves, with females showing more NHBD than males. Chances to detect NHBD increased with the size of habitat defined as available. This highlights the importance of considering the biological characteristics of the studied species when defining habitat availability. Our methodological approach can prove useful to inform conservation and management to identify habitats to be selected by reintroduced or naturally expanding populations.

18.
Biol Rev Camb Philos Soc ; 92(3): 1601-1629, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27682639

RESUMEN

The grey wolf (Canis lupus) is an iconic large carnivore that has increasingly been recognized as an apex predator with intrinsic value and a keystone species. However, wolves have also long represented a primary source of human-carnivore conflict, which has led to long-term persecution of wolves, resulting in a significant decrease in their numbers, genetic diversity and gene flow between populations. For more effective protection and management of wolf populations in Europe, robust scientific evidence is crucial. This review serves as an analytical summary of the main findings from wolf population genetic studies in Europe, covering major studies from the 'pre-genomic era' and the first insights of the 'genomics era'. We analyse, summarize and discuss findings derived from analyses of three compartments of the mammalian genome with different inheritance modes: maternal (mitochondrial DNA), paternal (Y chromosome) and biparental [autosomal microsatellites and single nucleotide polymorphisms (SNPs)]. To describe large-scale trends and patterns of genetic variation in European wolf populations, we conducted a meta-analysis based on the results of previous microsatellite studies and also included new data, covering all 19 European countries for which wolf genetic information is available: Norway, Sweden, Finland, Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Germany, Belarus, Russia, Italy, Croatia, Bulgaria, Bosnia and Herzegovina, Greece, Spain and Portugal. We compared different indices of genetic diversity in wolf populations and found a significant spatial trend in heterozygosity across Europe from south-west (lowest genetic diversity) to north-east (highest). The range of spatial autocorrelation calculated on the basis of three characteristics of genetic diversity was 650-850 km, suggesting that the genetic diversity of a given wolf population can be influenced by populations up to 850 km away. As an important outcome of this synthesis, we discuss the most pressing issues threatening wolf populations in Europe, highlight important gaps in current knowledge, suggest solutions to overcome these limitations, and provide recommendations for science-based wolf conservation and management at regional and Europe-wide scales.


Asunto(s)
Conservación de los Recursos Naturales , Genética de Población , Lobos/genética , Animales , Europa (Continente) , Variación Genética , Repeticiones de Microsatélite/genética
19.
PLoS One ; 11(6): e0157977, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27322387

RESUMEN

Dietary choices are central to our understanding of ecology and evolution. Still, many aspects of food choice have been hampered by time consuming procedures and methodological problems. Faster and cheaper methods, such as DNA metabarcoding, have therefore been widely adopted. However, there is still very little empirical support that this new method is better and more accurate compared to the classic methods. Here, we compare DNA metabarcoding to macroscopic identifications of rumen contents in two species of wild free-ranging ungulates: roe deer and fallow deer. We found that the methods were comparable, but they did not completely overlap. Sometimes the DNA method failed to identify food items that were found macroscopically, and the opposite was also true. However, the total number of taxa identified increased using DNA compared to the macroscopic analysis. Moreover, the taxonomic precision of metabarcoding was substantially higher, with on average 90% of DNA-sequences being identified to genus or species level compared to 75% of plant fragments using macroscopy. In niche overlap analyses, presence/absence data showed that both methods came to very similar conclusions. When using the sequence count data and macroscopic weight, niche overlap was lower than when using presence-absence data yet tended to increase when using DNA compared to macroscopy. Nevertheless, the significant positive correlation between macroscopic quantity and number of DNA sequences counted from the same plant group give support for the use of metabarcoding to quantify plants in the rumen. This study thus shows that there is much to be gained by using metabarcoding to quantitatively assess diet composition compared to macroscopic analysis, including higher taxonomic precision, sensitivity and cost efficiency.


Asunto(s)
Código de Barras del ADN Taxonómico/métodos , Dieta , Rumen/metabolismo , Animales , Ciervos , Probabilidad , Análisis de Secuencia de ADN
20.
Proc Biol Sci ; 272(1578): 2289-98, 2005 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-16191642

RESUMEN

Linkage maps are lacking for many highly influential model organisms in evolutionary research, including all passerine birds. Consequently, their full potential as research models is severely hampered. Here, we provide a partial linkage map and give novel estimates of sex-specific recombination rates in a passerine bird, the great reed warbler (Acrocephalus arundinaceus). Linkage analysis of genotypic data at 51 autosomal microsatellites and seven markers on the Z-chromosome (one of the sex chromosomes) from an extended pedigree resulted in 12 linkage groups with 2-8 loci. A striking feature of the map was the pronounced sex-dimorphism: males had a substantially lower recombination rate than females, which resulted in a suppressed autosomal map in males (sum of linkage groups: 110.2 cM) compared to females (237.2 cM; female/male map ratio: 2.15). The sex-specific recombination rates will facilitate the building of a denser linkage map and cast light on hypotheses about sex-specific recombination rates.


Asunto(s)
Mapeo Cromosómico , Caracteres Sexuales , Pájaros Cantores/genética , Animales , Secuencia de Bases , Cartilla de ADN , Genotipo , Escala de Lod , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Recombinación Genética/genética , Análisis de Secuencia de ADN , Suecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA