Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nano Lett ; 22(16): 6753-6759, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35939549

RESUMEN

Hot electrons play a crucial role in enhancing the efficiency of photon-to-current conversion or photocatalytic reactions. In semiconductor nanocrystals, energetic hot electrons capable of photoemission can be generated via the upconversion process involving the dopant-originated intermediate state, currently known only in Mn-doped cadmium chalcogenide quantum dots. Here, we report that Mn-doped CsPbBr3 nanocrystals are an excellent platform for generating hot electrons via upconversion that can benefit from various desirable exciton properties and the structural diversity of metal halide perovskites (MHPs). Two-dimensional Mn-doped CsPbBr3 nanoplatelets are particularly advantageous for hot electron upconversion due to the strong exciton-dopant interaction mediating the upconversion process. Furthermore, nanoplatelets reveal evidence for the hot electron upconversion via long-lived dark excitons in addition to bright excitons that may enhance the upconversion efficiency. This study establishes the feasibility of hot electron upconversion in MHP hosts and demonstrates the potential merits of two-dimensional MHP nanocrystals in the upconversion process.

2.
Nano Lett ; 21(22): 9543-9550, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34762431

RESUMEN

We investigated the magnetic effect of Mn2+ ions on an exciton of Mn-doped CsPbI3 quantum dots (QDs), where we looked for the signatures of an exciton magnetic polaron known to produce a large effective magnetic field in Mn-doped CdSe QDs. In contrast to Mn-doped CdSe QDs that can produce ∼100 T of magnetic field upon photoexcitation, manifested as a large change in the energy and relaxation dynamics of a bright exciton, Mn-doped CsPbI3 QDs exhibited little influence of a magnetic dopant on the behavior of a bright exciton. However, a µs-lived dark exciton in CsPbI3 QDs showed 40% faster decay in the presence of Mn2+, equivalent to the effect of ∼3 T of an external magnetic field. While further study is necessary to fully understand the origin of the large difference in the magneto-optic property of an exciton in two systems, we consider that the difference in antiferromagnetic coupling of the dopants is an important contributing factor.


Asunto(s)
Puntos Cuánticos , Fenómenos Magnéticos , Magnetismo , Fenómenos Físicos , Compuestos de Zinc
3.
Phys Rev Lett ; 126(19): 197702, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34047600

RESUMEN

A rotation sensor is one of the key elements of inertial navigation systems and compliments most cell phone sensor sets used for various applications. Currently, inexpensive and efficient solutions are mechanoelectronic devices, which nevertheless lack long-term stability. Realization of rotation sensors based on spins of fundamental particles may become a drift-free alternative to such devices. Here, we carry out a proof-of-concept experiment, demonstrating rotation measurements on a rotating setup utilizing nuclear spins of an ensemble of nitrogen vacancy centers as a sensing element with no stationary reference. The measurement is verified by a commercially available microelectromechanical system gyroscope.

4.
J Chem Phys ; 155(13): 134106, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34624981

RESUMEN

The dynamics of electron-hole recombination in pristine and defect-containing monolayer black phosphorus (ML-BP) has been studied computationally by several groups relying on the one-particle description of electronic excited states. Our recent developments enabled a more sophisticated and accurate treatment of excited states dynamics in systems with pronounced excitonic effects, including 2D materials such as ML-BP. In this work, I present a comprehensive characterization of optoelectronic properties and nonadiabatic dynamics of the ground state recovery in pristine and divacancy-containing ML-BP, relying on the linear-response time-dependent density functional theory description of excited states combined with several trajectory surface hopping methodologies and decoherence correction schemes. This work presents a revision and new implementation of the decoherence-induced surface hopping methodology. Several popular algorithms for nonadiabatic dynamics algorithms are assessed. The kinetics of nonradiative relaxation of lower-lying excited states in ML-BP systems is revised considering the new methodological developments. A general mechanism that explains the sensitivity of the nonradiative dynamics to the presence of divacancy defect in ML-BP is proposed. According to this mechanism, the excited states' relaxation may be inhibited by the presence of energetically close higher-energy states if electronic decoherence is present in the system.

5.
Nano Lett ; 20(10): 7321-7326, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32845638

RESUMEN

Dark exciton as the lowest-energy (ground) exciton state in metal halide perovskite nanocrystals is a subject of much interest. This is because the superior performance of perovskites as the photon source combined with long lifetime of dark exciton can be attractive for many applications of exciton. However, the direct observation of the intense and long-lived dark exciton emission, indicating facile access to dark ground exciton state, has remained elusive. Here, we report the intense photoluminescence from dark exciton with microsecond lifetime in strongly confined CsPbBr3 nanocrystals and reveal the crucial role of confinement in accessing the dark ground exciton state. This study establishes the potential of strongly quantum-confined perovskite nanostructures as the excellent platform to harvest the benefits of extremely long-lived dark exciton.

6.
J Chem Phys ; 153(18): 184703, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33187409

RESUMEN

The fine structure of the band edge exciton and the dark exciton photoluminescence (PL) are topics of significant interest in the research of semiconducting metal halide perovskite nanocrystals, with several conflicting reports on the level ordering of the bright and dark states and the accessibility of the emitting dark states. Recently, we observed the intense dark exciton PL in strongly confined CsPbBr3 nanocrystals at cryogenic temperatures, in contrast to weakly confined nanocrystals lacking dark exciton PL, which was explained by the confinement enhanced bright-dark exciton splitting. In this work, we investigated the size-dependence of the dark exciton photoluminescence properties in CsPbBr3 and CsPbI3 quantum dots in the strongly confined regime, showing the clear role of confinement in determining the bright-dark energy splitting (ΔEBD) and the dark exciton lifetime (τD). We observe the increase in both ΔEBD and τD with increasing quantum confinement in CsPbBr3 and CsPbI3 QDs, consistent with the earlier predictions on the size-dependence of ΔEBD and τD. Our results show that quantum confinement plays a crucial role in determining the accessibility to the dark exciton PL and its characteristics in metal halide perovskite nanocrystals.

7.
Entropy (Basel) ; 22(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321801

RESUMEN

Recently, the transformation from random to chaotic behavior in the statistics of Fano-Feshbach resonances was observed in thulium atoms with rising ensemble temperature. We performed random matrix theory simulations of such spectra and analyzed the resulting statistics in an attempt to understand the mechanism of the transformation. Our simulations show that, when evaluated in terms of the Brody parameter, resonance statistics do not change or change insignificantly when higher temperature resonances are appended to the statistics. In the experiments evaluated, temperature was changed simultaneously with optical dipole trap depth. Thus, simulations included the Stark shift based on the known polarizability of the free atoms and assuming their polarizability remains the same in the bound state. Somewhat surprisingly, we found that, while including the Stark shift does lead to minor statistical changes, it does not change the resonance statistics and, therefore, is not responsible for the experimentally observed statistic transformation. This observation suggests that either our assumption regarding the polarizability of Feshbach molecules is poor or that an additional mechanism changes the statistics and leads to more chaotic statistical behavior.

8.
Phys Chem Chem Phys ; 21(41): 23198-23208, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31612886

RESUMEN

Recent time-resolved transient absorption studies demonstrated that the rate of photoinduced interfacial charge transfer (CT) from Zn-phthalocyanine (ZnPc) to single-layer graphene (SLG) is faster than to double-layer graphene (DLG), in contrast to the expectation from Fermi's golden rule. We present the first time-domain non-adiabatic molecular dynamics (NA-MD) study of the electron injection process from photoexcited ZnPc molecules into SLG and DLG substrates. Our calculations suggest that CT occurs faster in the ZnPc/SLG system than in the ZnPc/DLG system, with 580 fs and 810 fs being the fastest components of the observed CT timescales, respectively. The computed timescales are in close agreement with those reported in the experiment. The computed CT timescales are determined largely by the magnitudes of the non-adiabatic couplings (NAC), which we find to be 4 meV and 2 meV, for the ZnPc/SLG and ZnPc/DLG systems, respectively. The transitions are driven mainly by the ZnPc out-of-plane bending mode at 1100 cm-1 and an overtone of fundamental modes in graphene at 2450 cm-1. We find that dephasing occurs on the timescale of 20 fs and is similar in both systems, so decoherence does not notably change the qualitative trends in the CT timescales. We highlight the importance of proper energy level alignment for capturing the qualitative trends in the CT dynamics observed in experiment. In addition, we illustrate several methodological points that are important for accurately modeling nonadiabatic dynamics in the ZnPc/FLG systems, such as the choice of surface hopping methodology, the use of phase corrections, NAC scaling, and the inclusion of Hubbard terms in the density functional and molecular dynamics calculations.

9.
J Chem Phys ; 151(12): 124107, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31575202

RESUMEN

We have implemented a Python-based software package within the Libra software for performing nonadiabatic molecular dynamics (NA-MD) within the neglect of back reaction approximation (NBRA). Available in the software are a wide variety of proposed hop acceptance (PHA) and decoherence methodologies. Using Libra, a comparative analysis of PHA schemes and decoherence methods is performed to examine thermal equilibrium in NA-MD simulations within the NBRA. The analysis is performed using 3 model systems, each of which highlights the effects of the different decoherence methods and PHA schemes on NA transitions. We find that the interplay between decoherence and PHA schemes is important for achieving detailed balance in the NBRA and discuss the conditions by which the detailed balance is achieved for each model. We discuss the qualitative features of NA dynamics computed using various combinations of decoherence and PHA schemes for a wide range of model and condition parameters such as temperature, energy gap magnitude, and dephasing times. Furthermore, we extend the analysis to include the Boltzmann corrected Ehrenfest methodology of Bastida and co-workers and compare the dynamics produced with it with that obtained using the surface hopping-based approach.

10.
Phys Chem Chem Phys ; 20(39): 25275-25294, 2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30276376

RESUMEN

We report a study on the non-adiabatic molecular dynamics (NA-MD) of the charge transfer (CT) process in the boron subphtalocyanine chloride (SubPc)/fullerene (C60) interface using our newly implemented Libra-X software package, which is based on an interface of the Libra NA-MD library and the GAMESS electronic structure software. In particular, we address the following aspects of the simulation protocol: (a) the choice of the potential used to treat interatomic interactions and its effect on the structures of the complex and CT rates; (b) the choice of the electronic structure methodology used; and (c) the choice of the trajectory surface hopping (TSH) methodology used. From our analysis of the electronic structure, we suggest that the distortion of the SubPc conical structure affects orbital localization and that the "breathing" motion of SubPc drives the CT process in SubPc/C60. This study illustrates that the choice of the TSH methodology and electronic decoherence are crucial for the CT simulation. We extend our analysis of CT in SubPc/(C60)n models by increasing the number of C60 molecules up to n = 4. We find that the details of the interfacial SubPc/(C60)n geometry determine the CT rate. Finally, we find the computed CT timescale to be in the range of 2.2-5.0 ps, which is in agreement with the experimentally determined timescale in the order of magnitude of ∼10 ps. The developed open-source Libra-X package is freely available on the Internet at https://github.com/Quantum-Dynamics-Hub/Libra-X.

11.
J Chem Phys ; 148(14): 144106, 2018 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-29655344

RESUMEN

A simple and robust methodology, dubbed Entangled Trajectories Hamiltonian Dynamics (ETHD), is developed to capture quantum nuclear effects such as tunneling and zero-point energy through the coupling of multiple classical trajectories. The approach reformulates the classically mapped second-order Quantized Hamiltonian Dynamics (QHD-2) in terms of coupled classical trajectories. The method partially enforces the uncertainty principle and facilitates tunneling. The applicability of the method is demonstrated by studying the dynamics in symmetric double well and cubic metastable state potentials. The methodology is validated using exact quantum simulations and is compared to QHD-2. We illustrate its relationship to the rigorous Bohmian quantum potential approach, from which ETHD can be derived. Our simulations show a remarkable agreement of the ETHD calculation with the quantum results, suggesting that ETHD may be a simple and inexpensive way of including quantum nuclear effects in molecular dynamics simulations.

12.
J Comput Chem ; 37(17): 1626-49, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27016373

RESUMEN

The "methodology discovery" library for quantum and classical dynamics simulations is presented. One of the major foci of the code is on nonadiabatic molecular dynamics simulations with model and atomistic Hamiltonians treated on the same footing. The essential aspects of the methodology, design philosophy, and implementation are discussed. The code capabilities are demonstrated on a number of model and atomistic test cases. It is demonstrated how the library can be used to study methodologies for quantum and classical dynamics, as well as a tool for performing detailed atomistic studies of nonadiabatic processes in molecular systems. The source code and additional information are available on the Web at http://www.acsu.buffalo.edu/~alexeyak/libra/index.html. © 2016 Wiley Periodicals, Inc.

13.
Phys Chem Chem Phys ; 18(47): 32466-32476, 2016 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-27869257

RESUMEN

Understanding the dynamics of electron-ion energy transfer in warm dense (WD) matter is important to the measurement of equation of state (EOS) properties and for understanding the energy balance in dynamic simulations. In this work, we present a comprehensive investigation of nonadiabatic electron relaxation and thermal excitation dynamics in aluminum under high pressure and temperature. Using quantum-classical trajectory surface hopping approaches, we examine the role of nonadiabatic couplings and electronic decoherence in electron-nuclear energy transfer in WD aluminum. The computed timescales range from 400 fs to 4.0 ps and are consistent with existing experimental studies. We have derived general scaling relationships between macroscopic parameters of WD systems such as temperature or mass density and the timescales of energy redistribution between quantum and classical degrees of freedom. The scaling laws are supported by computational results. We show that electronic decoherence plays essential role and can change the functional dependencies qualitatively. The established scaling relationships can be of use in modelling of WD matter.

14.
Phys Chem Chem Phys ; 18(7): 5219-31, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26812955

RESUMEN

Hybrid metal-organic halide perovskites have recently attracted a great deal of attention because of their interesting electronic, optical and transport properties, which make them promising materials for high-performance, low-cost solar cells. Fundamental understanding of the formation mechanisms and dynamics of photoinduced charge carriers is essential for improving the performance of perovskite solar cell devices. For example, a significant amount of absorbed solar energy is lost as a result of carrier thermalization. This energy could be harnessed by extracting hot carriers before they cool down to the band edges. Although such hot carrier collection is experimentally challenging, theoretical investigations based on time-dependent methods can guide future experimental research by providing insights into the thermalization process. Here, we perform ab initio nonadiabatic molecular dynamics simulations to study non-radiative relaxation dynamics of charge carriers in hybrid halide perovskites. We find that the carrier relaxation time can be considerably increased by mixing halogen atoms in the perovskite materials. These findings show that simple approaches could be adopted to slow down the thermalization process of hot carriers in perovskite materials.

15.
J Phys Chem A ; 120(45): 9028-9041, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27797515

RESUMEN

Nonadiabatic molecular dynamics (NA-MD) is an extremely useful approach to model electron transfer dynamics in molecular and solid state systems. The performance of NA-MD simulations depends critically on the accuracy of the underlying electronic structure properties, such as state energies and nonadiabatic couplings (NAC). Practical NA-MD modeling relies extensively on computationally efficient pure density functionals, despite the known intrinsic problems of the latter. A reliable solution to the problems presented by the use of pure density functionals, is the use of hybrid functionals, however hybrid functionals are significantly more expensive. In this work, we investigate how the choice of the density functional can affect the NAC magnitudes for small silicon clusters and silicon hydrides. We find that pure functionals can significantly overestimate NAC magnitudes in comparison to those obtained with hybrid functionals. The ratio of the two magnitudes increases with the system size and differs by an order of magnitude even for small Si7 and Si26 clusters. We present a detailed analysis of the correlations of the NACs computed with different methods, discuss the fundamental grounds for the observed differences, and propose a simple scaling technique for correcting NACs that can be used within the context of NA-MD simulations.

16.
J Am Chem Soc ; 137(35): 11517-25, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26287500

RESUMEN

Recent experimental studies demonstrated that photocatalytic CO2 reduction by Ru catalysts assembled on N-doped Ta2O5 surface is strongly dependent on the nature of the anchor group with which the Ru complexes are attached to the substrate. We report a comprehensive atomistic analysis of electron transfer dynamics in electroneutral Ru(di-X-bpy) (CO)2Cl2 complexes with X = COOH and PO3H2 attached to the N-Ta2O5 substrate. Nonadiabatic molecular dynamics simulations indicate that the electron transfer is faster in complexes with COOH anchors than in complexes with PO3H2 groups, due to larger nonadiabatic coupling. Quantum coherence counteracts this effect, however, to a small extent. The COOH anchor promotes the transfer with significantly higher frequency modes than PO3H2, due to both lighter atoms (C vs P) and stronger bonds (double vs single). The acceptor state delocalizes onto COOH, but not PO3H2, further favoring electron transfer in the COOH system. At the same time, the COOH anchor is prone to decomposition, in contrast to PO3H2, making the former show smaller turnover numbers in some cases. These theoretical predictions are consistent with recent experimental results, legitimating the proposed mechanism of the electron transfer. We emphasize the role of anchor stability, nonadiabatic coupling, and quantum coherence in determining the overall efficiency of artificial photocatalytic systems.

17.
J Am Chem Soc ; 136(4): 1599-608, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24397723

RESUMEN

Charge carrier multiplication in organic heterojunction systems, a process known as singlet fission (SF), holds promise for development of solar cells with enhanced photon-to-electron yields, and therefore it is of substantial fundamental interest. The efficiency of photovoltaic devices based on this principle is determined by complex dynamics involving key electronic states coupled to particular nuclear motions. Extensive experimental and theoretical studies are dedicated to this topic, generating multiple opinions on the nature of such states and motions, their properties, and mechanisms of the competing processes, including electron-phonon relaxation, SF, and charge separation. Using nonadiabatic molecular dynamics, we identify the key steps and mechanisms involved in the SF and subsequent charge separation, and build a comprehensive kinetic scheme that is consistent with the existing experimental and theoretical results. The ensuing model provides time scales that are in excellent agreement with the experimental observations. We demonstrate that SF competes with the traditional photoinduced electron transfer between pentacene and C60. Efficient SF relies on the presence of intermediate dark states within the pentacene subsystem. Having multiexciton and charge transfer character, these states play critical roles in the dynamics, and should be considered explicitly when explaining the entire process from the photoexcitation to the final charge separation.

18.
Phys Rev Lett ; 113(15): 153003, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375709

RESUMEN

The trajectory surface hopping method for quantum dynamics is reformulated in the space of many-particle states to include entanglement and correlation of trajectories. Used to describe many-body correlation effects in electronic structure theories, second quantization is applied to semiclassical trajectories. The new method allows coupling between individual trajectories via energy flow and common phase evolution. It captures the properties of a wave packet, such as branching, Heisenberg uncertainty, and decoherence. Applied to a superexchange process, the method shows very accurate results, comparable to exact quantum data and improving greatly on the standard approach.

19.
J Chem Phys ; 140(19): 194107, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24852530

RESUMEN

We present a new semiclassical approach for description of decoherence in electronically non-adiabatic molecular dynamics. The method is formulated on the grounds of the Ehrenfest dynamics and the Meyer-Miller-Thoss-Stock mapping of the time-dependent Schrödinger equation onto a fully classical Hamiltonian representation. We introduce a coherence penalty functional (CPF) that accounts for decoherence effects by randomizing the wavefunction phase and penalizing development of coherences in regions of strong non-adiabatic coupling. The performance of the method is demonstrated with several model and realistic systems. Compared to other semiclassical methods tested, the CPF method eliminates artificial interference and improves agreement with the fully quantum calculations on the models. When applied to study electron transfer dynamics in the nanoscale systems, the method shows an improved accuracy of the predicted time scales. The simplicity and high computational efficiency of the CPF approach make it a perfect practical candidate for applications in realistic systems.

20.
J Chem Phys ; 140(1): 014301, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24410223

RESUMEN

A detailed analysis of the resonance Raman depolarization ratio dispersion curve for the N-O symmetric stretch of nitryl chloride in methanol at excitation wavelengths spanning the D absorption band is presented. The depolarization ratios are modeled using the time-dependent formalism for Raman scattering with contributions from two excited states (2(1)A1 and 3(1)B1), which are taken as linearly dissociative along the Cl-N coordinate. The analysis focuses on the interplay between different types of broadening revealing the importance of inhomogenous broadening in determining the relative contributions of the two electronic transitions. We find that the transition dipole moment (M) for 2(1)A1 is greater than for 3(1)B1, in agreement with gas phase calculations in the literature [A. Lesar, M. Hdoscek, M. Muhlhauser, and S. D. Peyerimhoff, Chem. Phys. Lett. 383, 84 (2004)]. However, we find that the polarity of the solvent influences the excited state energetics, leading to a reversal in the ordering of these two states with 3(1)B1 shifting to lower energies. Molecular dynamics simulations along with linear response and ab initio calculations support the evidence extracted from resonance Raman intensity analysis, providing insights on ClNO2 electronic structure, solvation effects in methanol, and the source of broadening, emphasizing the importance of a contribution from inhomogeneous linewidth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA