Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 603(7899): 124-130, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35197626

RESUMEN

A hallmark pathological feature of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is the depletion of RNA-binding protein TDP-43 from the nucleus of neurons in the brain and spinal cord1. A major function of TDP-43 is as a repressor of cryptic exon inclusion during RNA splicing2-4. Single nucleotide polymorphisms in UNC13A are among the strongest hits associated with FTD and ALS in human genome-wide association studies5,6, but how those variants increase risk for disease is unknown. Here we show that TDP-43 represses a cryptic exon-splicing event in UNC13A. Loss of TDP-43 from the nucleus in human brain, neuronal cell lines and motor neurons derived from induced pluripotent stem cells resulted in the inclusion of a cryptic exon in UNC13A mRNA and reduced UNC13A protein expression. The top variants associated with FTD or ALS risk in humans are located in the intron harbouring the cryptic exon, and we show that they increase UNC13A cryptic exon splicing in the face of TDP-43 dysfunction. Together, our data provide a direct functional link between one of the strongest genetic risk factors for FTD and ALS (UNC13A genetic variants), and loss of TDP-43 function.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exones/genética , Demencia Frontotemporal/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Neuronas Motoras/patología , Proteínas del Tejido Nervioso
2.
Neurobiol Dis ; 155: 105364, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857636

RESUMEN

Fused in sarcoma/translated in liposarcoma (FUS) is a causative gene of amyotrophic lateral sclerosis (ALS). Mutated FUS causes accumulation of DNA damage and cytosolic stress granule (SG) formation, thereby motor neuron (MN) death. However, key molecular aetiology remains unclear. Here, we applied a novel platform technology, iBRN, "Non- biased" Bayesian gene regulatory network analysis based on induced pluripotent stem cell (iPSC)-derived cell model, to elucidate the molecular aetiology using transcriptome of iPSC-derived MNs harboring FUSH517D. iBRN revealed "hub molecules", which strongly influenced transcriptome network, such as miR-125b-5p-TIMELESS axis and PRKDC for the molecular aetiology. Next, we confirmed miR-125b-5p-TIMELESS axis in FUSH517D MNs such that miR-125b-5p regulated several DNA repair-related genes including TIMELESS. In addition, we validated both introduction of miR-125b-5p and knocking down of TIMELESS caused DNA damage in the cell culture model. Furthermore, PRKDC was strongly associated with FUS mis-localization into SGs by DNA damage under impaired DNA-PK activity. Collectively, our iBRN strategy provides the first compelling evidence to elucidate molecular aetiology in neurodegenerative diseases.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Redes Reguladoras de Genes/fisiología , Células Madre Pluripotentes Inducidas/fisiología , MicroARNs/genética , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/metabolismo , Teorema de Bayes , Línea Celular Tumoral , Daño del ADN/fisiología , Técnicas de Inactivación de Genes/métodos , Humanos , MicroARNs/biosíntesis , Proteína FUS de Unión a ARN/biosíntesis
3.
Mol Ther ; 28(4): 1133-1153, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32087766

RESUMEN

Mutations in dysferlin are responsible for a group of progressive, recessively inherited muscular dystrophies known as dysferlinopathies. Using recombinant proteins and affinity purification methods combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found that AMP-activated protein kinase (AMPK)γ1 was bound to a region of dysferlin located between the third and fourth C2 domains. Using ex vivo laser injury experiments, we demonstrated that the AMPK complex was vital for the sarcolemmal damage repair of skeletal muscle fibers. Injury-induced AMPK complex accumulation was dependent on the presence of Ca2+, and the rate of accumulation was regulated by dysferlin. Furthermore, it was found that the phosphorylation of AMPKα was essential for plasma membrane repair, and treatment with an AMPK activator rescued the membrane-repair impairment observed in immortalized human myotubes with reduced expression of dysferlin and dysferlin-null mouse fibers. Finally, it was determined that treatment with the AMPK activator metformin improved the muscle phenotype in zebrafish and mouse models of dysferlin deficiency. These findings indicate that the AMPK complex is essential for plasma membrane repair and is a potential therapeutic target for dysferlinopathy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Disferlina/química , Disferlina/metabolismo , Metformina/administración & dosificación , Músculo Esquelético/lesiones , Distrofia Muscular de Cinturas/tratamiento farmacológico , Animales , Línea Celular , Modelos Animales de Enfermedad , Disferlina/genética , Humanos , Rayos Láser/efectos adversos , Metformina/farmacología , Ratones , Músculo Esquelético/metabolismo , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Mutación , Fosforilación , Dominios Proteicos , Sarcolema/metabolismo , Pez Cebra
4.
FASEB J ; 33(9): 10240-10256, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31211923

RESUMEN

The neuropathological hallmarks of Parkinson's disease (PD) include the appearance of α-synuclein (α-SYN)-positive Lewy bodies (LBs) and the loss of catecholaminergic neurons. Thus, a potential mechanism promoting the uptake of extracellular α-SYN may exist in susceptible neurons. Of the various differentially expressed proteins, we are interested in flotillin (FLOT)-1 because this protein is highly expressed in the brainstem catecholaminergic neurons and is strikingly up-regulated in PD brains. In this study, we found that extracellular monomeric and fibrillar α-SYN can potentiate FLOT1-dopamine transporter (DAT) binding and pre-endocytic clustering of DAT on the cell surface, thereby facilitating DAT endocytosis and down-regulating its transporter activity. Moreover, we demonstrated that α-SYN itself exploited the DAT endocytic process to enter dopaminergic neuron-like cells, and both FLOT1 and DAT were found to be the components of LBs. Altogether, these findings revealed a novel role of extracellular α-SYN on cellular trafficking of DAT and may provide a rationale for the cell type-specific, functional, and pathologic alterations in PD.-Kobayashi, J., Hasegawa, T., Sugeno, N., Yoshida, S., Akiyama, T., Fujimori, K., Hatakeyama, H., Miki, Y., Tomiyama, A., Kawata, Y., Fukuda, M., Kawahata, I., Yamakuni, T., Ezura, M., Kikuchi, A., Baba, T., Takeda, A., Kanzaki, M., Wakabayashi, K., Okano, H., Aoki, M. Extracellular α-synuclein enters dopaminergic cells by modulating flotillin-1-assisted dopamine transporter endocytosis.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/patología , Cuerpos de Lewy/patología , Proteínas de la Membrana/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Encéfalo/patología , Membrana Celular/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Neuronas Dopaminérgicas/metabolismo , Endocitosis , Humanos , Cuerpos de Lewy/metabolismo , Proteínas de la Membrana/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Transporte de Proteínas , alfa-Sinucleína/genética
5.
J Neurosci Res ; 96(2): 222-233, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28752900

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Progressive and systemic loss of motor neurons with gliosis in the central nervous system (CNS) is a neuropathological hallmark of ALS. Chondroitin sulfate proteoglycans (CSPGs) are the major components of the extracellular matrix of the mammalian CNS, and they inhibit axonal regeneration physically by participating to form the glial scar. Recently, protein tyrosine phosphatase sigma (PTPσ) and leukocyte common antigen-related protein were discovered as CSPG receptors that play roles in inhibiting regeneration. Here we examined the expression of CSPG receptors in transgenic female rats overexpressing an ALS-linked mutant cytosolic Cu/Zn superoxide dismutase gene (SOD1). In contrast to controls, multiple immunofluorescence analyses revealed aberrant expression of CSPG receptors dominantly in reactive astrocytes, while PTPσ expression in neurons decreased in the spinal ventral horns of ALS transgenic rats. The aberrant and progressive astrocytic expression of CSPG receptors and reactive astrocytes themselves may be therapeutic targets for reconstructing a regeneration-supportive microenvironment under neurodegenerative conditions such as ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Astrocitos/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Regulación de la Expresión Génica/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Esclerosis Amiotrófica Lateral/genética , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Médula Espinal/patología , Estadísticas no Paramétricas , Superóxido Dismutasa-1/genética
6.
Muscle Nerve ; 54(3): 398-404, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26823199

RESUMEN

INTRODUCTION: We investigated possible genotype-phenotype correlations in Japanese patients with familial amyotrophic lateral sclerosis (FALS) carrying fused in sarcoma/translated in liposarcoma (FUS/TLS) gene mutations. METHODS: A consecutive series of 111 Japanese FALS pedigrees were screened for copper/zinc superoxide dismutase 1 (SOD1) and FUS/TLS gene mutations. Clinical data, including onset age, onset site, disease duration, and extramotor symptoms, were collected. RESULTS: Nine different FUS/TLS mutations were found in 12 pedigrees. Most of the patients with FUS/TLS-linked FALS demonstrated early onset in the brainstem/upper cervical region, and relatively short disease duration. A few mutations exhibited phenotypes that were distinct from typical cases. Frontotemporal dementia was present in 1 patient. CONCLUSIONS: This study revealed a characteristic phenotype in FUS/TLS-linked FALS patients in Japan. FUS/TLS screening is recommended in patients with FALS with this phenotype. Muscle Nerve 54: 398-404, 2016.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Salud de la Familia , Estudios de Asociación Genética , Mutación/genética , Proteína FUS de Unión a ARN/genética , Adenosina Trifosfatasas/genética , Adulto , Anciano , Proteína C9orf72 , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Femenino , Genotipo , Humanos , Japón , Masculino , Persona de Mediana Edad , Fenotipo , Profilinas/genética , Proteínas/genética , Superóxido Dismutasa-1/genética , Proteína que Contiene Valosina , Adulto Joven
7.
Proc Natl Acad Sci U S A ; 109(12): 4633-8, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22371582

RESUMEN

The functional roles of the primate posterior medial prefrontal cortex have remained largely unknown. Here, we show that this region participates in the regulation of actions in the presence of multiple response tactics. Monkeys performed a forelimb task in which a visual cue required prompt decision of reaching to a left or a right target. The location of the cue was either ipsilateral (concordant) or contralateral (discordant) to the target. As a result of extensive training, the reaction times for the concordant and discordant trials were indistinguishable, indicating that the monkeys developed tactics to overcome the cue-response conflict. Prefrontal neurons exhibited prominent activity when the concordant and discordant trials were randomly presented, requiring rapid selection of a response tactic (reach toward or away from the cue). The following findings indicate that these neurons are involved in the selection of tactics, rather than the selection of action or monitoring of response conflict: (i) The response period activity of neurons in this region disappeared when the monkeys performed the task under the behavioral condition that required a single tactic alone, whereas the action varied across trials. (ii) The neuronal activity was found in the dorsomedial prefrontal cortex but not in the anterior cingulate cortex that has been implicated for the response conflict monitoring. These results suggest that the medial prefrontal cortex participates in the selection of a response tactic that determines an appropriate action. Furthermore, the observation of dynamic, task-dependent neuronal activity necessitates reconsideration of the conventional concept of cortical motor representation.


Asunto(s)
Neuronas/metabolismo , Corteza Prefrontal/fisiología , Animales , Conducta Animal , Mapeo Encefálico/métodos , Electrofisiología/métodos , Femenino , Haplorrinos , Masculino , Modelos Biológicos , Corteza Motora/fisiología , Plasticidad Neuronal , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología
8.
bioRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38328059

RESUMEN

In frontotemporal dementia and amyotrophic lateral sclerosis, the RNA-binding protein TDP-43 is depleted from the nucleus. TDP-43 loss leads to cryptic exon inclusion but a role in other RNA processing events remains unresolved. Here, we show that loss of TDP-43 causes widespread changes in alternative polyadenylation, impacting expression of disease-relevant genes (e.g., ELP1, NEFL, and TMEM106B) and providing evidence that alternative polyadenylation is a new facet of TDP-43 pathology.

9.
Exp Brain Res ; 229(3): 395-405, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23479139

RESUMEN

Neural network contributing to forelimb task performance in the frontal cortex is dynamically reorganized by the necessity for volitional control of action. Neurons in the posterior medial prefrontal cortex (pmPFC) exhibit clear activity modulation when monkeys volitionally select the correct response tactic from multiple choices, but such activity disappears if selection of a tactic is unnecessary. Prompted by these results, we studied how the requirement to select an appropriate tactic affects the neural representation of action in downstream cortical areas. Two monkeys performed a spatial arm-reaching task with either left or right targets. The task required the monkeys to reach either toward (concordant trials) or away from (discordant trials) an illuminated target. Under the dual-tactic condition, concordant and discordant trials were randomly intermixed, requiring the selection of a response tactic. Under the single-tactic condition, only concordant trials were presented, allowing the monkeys to use the same tactic. Neurons in the pmPFC exhibited clear activity related to task performance under the former condition, but such activity disappeared under the latter condition. In contrast, neurons related to task performance were present under both conditions in supplementary motor area (SMA) and presupplementary motor area (pre-SMA). However, the efficacy of action representation by SMA but not pre-SMA neurons dramatically improved under the single-tactic condition. These results suggest that selection of the appropriate response tactic reorganizes neural circuits in specific motor areas in the medial frontal cortex, in addition to the pmPFC.


Asunto(s)
Lóbulo Frontal/fisiología , Neuronas/fisiología , Volición/fisiología , Animales , Conducta Animal/fisiología , Mapeo Encefálico/métodos , Señales (Psicología) , Haplorrinos , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Análisis y Desempeño de Tareas
10.
Clin Transl Med ; 12(5): e818, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35567447

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating human neurodegenerative diseases. A hallmark pathological feature of both diseases is the depletion of the RNA-binding protein TDP-43 from the nucleus in the brain and spinal cord of patients. A major function of TDP-43 is to repress the inclusion of cryptic exons during RNA splicing. When it becomes depleted from the nucleus in disease, this function is lost, and recently, several key cryptic splicing targets of TDP-43 have emerged, including STMN2, UNC13A, and others. UNC13A is a major ALS/FTD risk gene, and the genetic variations that increase the risk for disease seem to do so by making the gene more susceptible to cryptic exon inclusion when TDP-43 function is impaired. Here, we discuss the prospects and challenges of harnessing these cryptic splicing events as novel therapeutic targets and biomarkers. Deciphering this new cryptic code may be a touchstone for ALS and FTD diagnosis and treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Humanos
11.
Cell Rep ; 41(4): 111508, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288714

RESUMEN

Mutations in the ataxin-2 gene (ATXN2) cause the neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). A therapeutic strategy using antisense oligonucleotides targeting ATXN2 has entered clinical trial in humans. Additional ways to decrease ataxin-2 levels could lead to cheaper or less invasive therapies and elucidate how ataxin-2 is normally regulated. Here, we perform a genome-wide fluorescence-activated cell sorting (FACS)-based CRISPR-Cas9 screen in human cells and identify genes encoding components of the lysosomal vacuolar ATPase (v-ATPase) as modifiers of endogenous ataxin-2 protein levels. Multiple FDA-approved small molecule v-ATPase inhibitors lower ataxin-2 protein levels in mouse and human neurons, and oral administration of at least one of these drugs-etidronate-is sufficient to decrease ataxin-2 in the brains of mice. Together, we propose v-ATPase as a drug target for ALS and SCA2 and demonstrate the value of FACS-based screens in identifying genetic-and potentially druggable-modifiers of human disease proteins.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ataxias Espinocerebelosas , ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Ratones , Ataxina-2/genética , Ataxina-2/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Preparaciones Farmacéuticas , Ácido Etidrónico , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/genética , Oligonucleótidos Antisentido/genética
12.
Cell Rep ; 41(4): 111505, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288715

RESUMEN

Gene-based therapeutic strategies to lower ataxin-2 levels are emerging for the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type 2 (SCA2). Additional strategies to lower levels of ataxin-2 could be beneficial. Here, we perform a genome-wide arrayed small interfering RNA (siRNA) screen in human cells and identify RTN4R, the gene encoding the RTN4/NoGo-Receptor, as a potent modifier of ataxin-2 levels. RTN4R knockdown, or treatment with a peptide inhibitor, is sufficient to lower ataxin-2 protein levels in mouse and human neurons in vitro, and Rtn4r knockout mice have reduced ataxin-2 levels in vivo. We provide evidence that ataxin-2 shares a role with the RTN4/NoGo-Receptor in limiting axonal regeneration. Reduction of either protein increases axonal regrowth following axotomy. These data define the RTN4/NoGo-Receptor as a novel therapeutic target for ALS and SCA2 and implicate the targeting of ataxin-2 as a potential treatment following nerve injury.


Asunto(s)
Esclerosis Amiotrófica Lateral , Ataxias Espinocerebelosas , Animales , Ratones , Humanos , Ataxina-2/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , ARN Interferente Pequeño , Receptores Nogo/metabolismo , Ataxias Espinocerebelosas/genética , Ratones Noqueados , Péptidos/metabolismo , Proteínas Nogo/genética , Proteínas Nogo/metabolismo
13.
Stem Cell Reports ; 16(6): 1527-1541, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048688

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable motor neuron (MN) disease. The reasons for selective MN vulnerability in ALS are unknown. Axonal pathology is among the earliest signs of ALS. We searched for novel modulatory genes in human MN axon shortening affected by TARDBP mutations. In transcriptome analysis of RNA present in the axon compartment of human-derived induced pluripotent stem cell (iPSC)-derived MNs, PHOX2B (paired-like homeobox protein 2B) showed lower expression in TARDBP mutant axons, which was consistent with axon qPCR and in situ hybridization. PHOX2B mRNA stability was reduced in TARDBP mutant MNs. Furthermore, PHOX2B knockdown reduced neurite length in human MNs. Finally, phox2b knockdown in zebrafish induced short spinal axons and impaired escape response. PHOX2B is known to be highly express in other types of neurons maintained after ALS progression. Collectively, TARDBP mutations induced loss of axonal resilience, which is an important ALS-related phenotype mediated by PHOX2B downregulation.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Axones/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas Motoras/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Proteínas de Homeodominio/genética , Humanos , Mutación , Fenotipo , Factores de Transcripción/genética , Transcriptoma
15.
J Hum Genet ; 55(4): 252-4, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20224596

RESUMEN

Mutations in the fused in sarcoma (FUS, also known as translated in liposarcoma) gene have been recently discovered to be associated with familial amyotrophic lateral sclerosis (FALS) in African, European and American populations. In a Japanese family with FALS, we found the R521C FUS mutation, which has been reported to be found in various ethnic backgrounds. The family history revealed 23 patients with FALS among 46 family members, suggesting a 100% penetrance rate. They developed muscle weakness at an average age of 35.3 years, followed by dysarthria, dysphagia, spasticity and muscle atrophy. The average age of death was 37.2 years. Neuropathological examination of the index case revealed remarkable atrophy of the brainstem tegmentum characterized by cytoplasmic basophilic inclusion bodies in the neurons of the brainstem. We screened 40 FALS families in Japan and found 4 mutations (S513P, K510E, R514S, H517P) in exon 14 and 15 of FUS. Even in Asian races, FALS with FUS mutations may have the common characteristics of early onset, rapid progress and high penetrance rate, although in patients with the S513P mutation it was late-onset. Degeneration in multiple systems and cytoplasmic basophilic inclusion bodies were found in the autopsied cases.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Mutación Missense , Proteína FUS de Unión a ARN/genética , Edad de Inicio , Esclerosis Amiotrófica Lateral/epidemiología , Esclerosis Amiotrófica Lateral/patología , Pueblo Asiatico/genética , Análisis Mutacional de ADN , Progresión de la Enfermedad , Exones/genética , Salud de la Familia , Femenino , Humanos , Cuerpos de Inclusión/patología , Japón , Masculino , Linaje
16.
Front Neurosci ; 14: 194, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32269505

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an intractable adult-onset neurodegenerative disease that leads to the loss of upper and lower motor neurons (MNs). The long axons of MNs become damaged during the early stages of ALS. Genetic and pathological analyses of ALS patients have revealed dysfunction in the MN axon homeostasis. However, the molecular pathomechanism for the degeneration of axons in ALS has not been fully elucidated. This review provides an overview of the proposed axonal pathomechanisms in ALS, including those involving the neuronal cytoskeleton, cargo transport within axons, axonal energy supply, clearance of junk protein, neuromuscular junctions (NMJs), and aberrant axonal branching. To improve understanding of the global changes in axons, the review summarizes omics analyses of the axonal compartments of neurons in vitro and in vivo, including a motor nerve organoid approach that utilizes microfluidic devices developed by this research group. The review also discusses the relevance of intra-axonal transcription factors frequently identified in these omics analyses. Local axonal translation and the relationship among these pathomechanisms should be pursued further. The development of novel strategies to analyze axon fractions provides a new approach to establishing a detailed understanding of resilience of long MN and MN pathology in ALS.

17.
iScience ; 23(9): 101491, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32891887

RESUMEN

C21ORF2 and NEK1 have been identified as amyotrophic lateral sclerosis (ALS)-associated genes. Both genes are also mutated in certain ciliopathies, suggesting that they might contribute to the same signaling pathways. Here we show that FBXO3, the substrate receptor of an SCF ubiquitin ligase complex, binds and ubiquitylates C21ORF2, thereby targeting it for proteasomal degradation. C21ORF2 stabilizes the kinase NEK1, with the result that loss of FBXO3 stabilizes not only C21ORF2 but also NEK1. Conversely, NEK1-mediated phosphorylation stabilizes C21ORF2 by attenuating its interaction with FBXO3. We found that the ALS-associated V58L mutant of C21ORF2 is more susceptible to phosphorylation by NEK1, with the result that it is not ubiquitylated by FBXO3 and therefore accumulates together with NEK1. Expression of C21ORF2(V58L) in motor neurons induced from mouse embryonic stem cells impaired neurite outgrowth. We suggest that inhibition of NEK1 activity is a potential therapeutic approach to ALS associated with C21ORF2 mutation.

18.
Stem Cell Res ; 47: 101896, 2020 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-32659732

RESUMEN

Amyotrophic Lateral Sclerosis is the most common motor neuron degenerative disease in adults, and TARDBP gene mutations have been reported to be involved in the pathogenesis. We present here how we generated the human induced pluripotent stem cell (hiPSC) line KEIOi001-A/SM4-4-5 from the peripheral blood of a 63-year-old male patient presenting the c.1035C > G heterozygous SNP mutation in the TARDBP gene locus. The established hiPSC line does not express the exogenous reprogramming factors oriP nor EBNA1 and shows no karyotypic abnormalities, while it expresses pluripotent stem cell markers, presents the SNP mutation and is capable of three-germ layers differentiation in vitro.

19.
EBioMedicine ; 45: 362-378, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31262712

RESUMEN

BACKGROUND: The characteristic structure of motor neurons (MNs), particularly of the long axons, becomes damaged in the early stages of amyotrophic lateral sclerosis (ALS). However, the molecular pathophysiology of axonal degeneration remains to be fully elucidated. METHOD: Two sets of isogenic human-induced pluripotent stem cell (hiPSCs)-derived MNs possessing the single amino acid difference (p.H517D) in the fused in sarcoma (FUS) were constructed. By combining MN reporter lentivirus, MN specific phenotype was analyzed. Moreover, RNA profiling of isolated axons were conducted by applying the microfluidic devices that enable axon bundles to be produced for omics analysis. The relationship between the target gene, which was identified as a pathological candidate in ALS with RNA-sequencing, and the MN phenotype was confirmed by intervention with si-RNA or overexpression to hiPSCs-derived MNs and even in vivo. The commonality was further confirmed with other ALS-causative mutant hiPSCs-derived MNs and human pathology. FINDINGS: We identified aberrant increasing of axon branchings in FUS-mutant hiPSCs-derived MN axons compared with isogenic controls as a novel phenotype. We identified increased level of Fos-B mRNA, the binding target of FUS, in FUS-mutant MNs. While Fos-B reduction using si-RNA or an inhibitor ameliorated the observed aberrant axon branching, Fos-B overexpression resulted in aberrant axon branching even in vivo. The commonality of those phenotypes was further confirmed with other ALS causative mutation than FUS. INTERPRETATION: Analyzing the axonal fraction of hiPSC-derived MNs using microfluidic devices revealed that Fos-B is a key regulator of FUS-mutant axon branching. FUND: Japan Agency for Medical Research and development; Japanese Ministry of Education, Culture, Sports, Science and Technology Clinical Research, Innovation and Education Center, Tohoku University Hospital; Japan Intractable Diseases (Nanbyo) Research Foundation; the Kanae Foundation for the Promotion of Medical Science; and "Inochi-no-Iro" ALS research grant.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas Proto-Oncogénicas c-fos/genética , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Axones/metabolismo , Axones/patología , Diferenciación Celular/genética , Línea Celular , Edición Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lentivirus/genética , Neuronas Motoras/metabolismo , Mutación , Neurogénesis/genética , Fenotipo , ARN Interferente Pequeño/genética
20.
Biosci Biotechnol Biochem ; 72(9): 2441-3, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18776665

RESUMEN

Yellowtail meat containing 0 (control), 1% and 2% NaCl weas boiled and stored at 0 degrees C, and changes in 4-hydroxyhexenal (HHE) and malon aldehyde (MA) contents were analyzed after 0, 1, 2, and 3 d. The HHE contents in all samples increased significantly after 3 d. The MA contents in the NaCl-containing samples were significantly higher than those in the control after storage.


Asunto(s)
Aldehídos/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Carne/análisis , Cloruro de Sodio/farmacología , Porcinos/metabolismo , Animales , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA