Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurosci ; 35(9): 4065-70, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25740533

RESUMEN

Ribbon synapses of photoreceptor cells and bipolar neurons in the retina signal graded changes in light intensity via sustained release of neurotransmitter. One molecular specialization of retinal ribbon synapses is the expression of complexin protein subtypes Cplx3 and Cplx4, whereas conventional synapses express Cplx1 and Cplx2. Because complexins bind to the molecular machinery for synaptic vesicle fusion (the SNARE complex) and modulate transmitter release at conventional synapses, we examined the roles of ribbon-specific complexin in regulating release at ribbon synapses of ON bipolar neurons from mouse retina. To interfere acutely with the interaction of native complexins with the SNARE complex, a peptide consisting of the highly conserved SNARE-binding domain of Cplx3 was introduced via a whole-cell patch pipette placed directly on the synaptic terminal, and vesicle fusion was monitored using capacitance measurements and FM-dye destaining. The inhibitory peptide, but not control peptides, increased spontaneous synaptic vesicle fusion, partially depleted reserve synaptic vesicles, and reduced fusion triggered by opening voltage-gated calcium channels under voltage clamp, without affecting the number of synaptic vesicles associated with ribbons, as revealed by electron microscopy of recorded terminals. The results are consistent with a dual role for ribbon-specific complexin, acting as a brake on the SNARE complex to prevent spontaneous fusion in the absence of calcium influx, while at the same time facilitating release evoked by depolarization.


Asunto(s)
Proteínas del Ojo/farmacología , Proteínas del Tejido Nervioso/farmacología , Neurotransmisores/metabolismo , Células Bipolares de la Retina/fisiología , Sinapsis/fisiología , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular , Animales , Proteínas del Ojo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Vesículas Sinápticas/fisiología
2.
J Neurosci ; 33(19): 8216-26, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23658160

RESUMEN

Ribbon synapses of tonically releasing sensory neurons must provide a large pool of releasable vesicles for sustained release, while minimizing spontaneous release in the absence of stimulation. Complexins are presynaptic proteins that may accomplish this dual task at conventional synapses by interacting with the molecular machinery of synaptic vesicle fusion at the active zone to retard spontaneous vesicle exocytosis yet facilitate release evoked by depolarization. However, ribbon synapses of photoreceptor cells and bipolar neurons in the retina express distinct complexin subtypes, perhaps reflecting the special requirements of these synapses for tonic release. To investigate the role of ribbon-specific complexins in transmitter release, we combined presynaptic voltage clamp, fluorescence imaging, electron microscopy, and behavioral assays of photoreceptive function in zebrafish. Acute interference with complexin function using a peptide derived from the SNARE-binding domain increased spontaneous synaptic vesicle fusion at ribbon synapses of retinal bipolar neurons without affecting release triggered by depolarization. Knockdown of complexin by injection of an antisense morpholino into zebrafish embryos prevented photoreceptor-driven migration of pigment in skin melanophores and caused the pigment distribution to remain in the dark-adapted state even when embryos were exposed to light. This suggests that loss of complexin function elevated spontaneous release in illuminated photoreceptors sufficiently to mimic the higher release rate normally associated with darkness, thus interfering with visual signaling. We conclude that visual system-specific complexins are required for proper illumination-dependent modulation of the rate of neurotransmitter release at visual system ribbon synapses.


Asunto(s)
Quelantes/metabolismo , Neurotransmisores/metabolismo , Células Bipolares de la Retina/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Quelantes/química , Quelantes/clasificación , Adaptación a la Oscuridad/fisiología , Exocitosis/fisiología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Masculino , Melanóforos/metabolismo , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/metabolismo , Oligodesoxirribonucleótidos Antisentido/farmacología , Técnicas de Placa-Clamp , Retina/citología , Células Bipolares de la Retina/efectos de los fármacos , Proteínas SNARE/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/fisiología , Pez Cebra
3.
Proc Natl Acad Sci U S A ; 108(2): 852-7, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21187387

RESUMEN

Target-derived neurotrophins use retrogradely transported Trk-signaling endosomes to promote survival and neuronal phenotype at the soma. Despite their critical role in neurotrophin signaling, the nature and molecular composition of these endosomes remain largely unknown, the result of an inability to specifically identify the retrograde signaling entity. Using EGF-bound nanoparticles and chimeric, EGF-binding TrkB receptors, we elucidate Trk-endosomal events involving their formation, processing, retrograde transport, and somal signaling in sympathetic neurons. By comparing retrograde endosomal signaling by Trk to the related but poorly neuromodulatory EGF-receptor, we find that Trk and EGF-receptor endosomes are formed and processed by distinct mechanisms. Surprisingly, Trk and EGF-receptors are both retrogradely transported to the soma in multivesicular bodies. However, only the Trk-multivesicular bodies rely on Pincher-dependent macroendocytosis and processing. Retrograde signaling through Pincher-generated Trk-multivesicular bodies is distinctively refractory to signal termination by lysosomal processing, resulting in sustained somal signaling and neuronal gene expression.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Endosomas/metabolismo , Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Receptor trkA/metabolismo , Transducción de Señal , Animales , Endocitosis , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Microscopía Fluorescente/métodos , Células PC12 , Ratas , Proteínas de Unión al GTP rab5/metabolismo
4.
Mol Vis ; 19: 917-26, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23687428

RESUMEN

PURPOSE: Synaptic ribbons are organelles found at presynaptic active zones of sensory neurons that generate sustained graded electrical signals in response to stimuli, including retinal photoreceptor cells and bipolar neurons. RIBEYE is the major and specific protein constituent of ribbons; however, over the past decade an increasing number of other proteins have been identified at ribbon active zones, including C-terminal-binding protein 1 (CtBP1; a regulator of transcription and membrane trafficking that might bind to the B domain of RIBEYE). The appearance of CtBP1 together with RIBEYE suggests that it may contribute to ribbon function, but the possible role of CtBP1 at ribbon synapses has not yet been examined. Using CtBP1-knockout mice, we tested for functional effects of absence of CtBP1 protein. METHODS: Confocal microscopy, electrophysiology, and electron microscopy were used to examine the structure and function of ribbon synapses in the retina and in isolated bipolar neurons from CtBP1 null mice compared with their wild-type littermates. RESULTS: Expression of ribbons appeared to be normal in CtBP1 null mouse retina as revealed by immunofluorescence with an antibody to the B domain of RIBEYE and by binding studies using a fluorescent peptide that binds to RIBEYE in ribbons of living bipolar cells. Electron microscopy also showed grossly normal pre- and postsynaptic organization of ribbon synapses in both photoreceptors and bipolar cells. Synaptic vesicles were normal in size, but the overall density of reserve vesicles was reduced by ~20% in the cytoplasm of CtBP1 null ribbon synaptic terminals. However, the reduced vesicle density did not detectably alter synaptic function of bipolar neurons as revealed by activity-dependent loading of synaptic vesicles with FM4-64, presynaptic calcium current, capacitance measurements of synaptic exocytosis, and destaining of FM dye upon stimulation. CONCLUSIONS: Overall the results suggest that CtBP1 protein is not essential for the formation of functional ribbon synapses in the retina.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas de Unión al ADN/metabolismo , Retina/metabolismo , Retina/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Animales , Proteínas Co-Represoras , Ratones , Ratones Noqueados , Fosfoproteínas/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Células Bipolares de la Retina/citología , Células Bipolares de la Retina/metabolismo , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestructura
5.
Front Neural Circuits ; 16: 978837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213206

RESUMEN

Modulation of the release of glutamate by activation of presynaptic nicotinic acetylcholine receptors (nAChRs) is one of the most prevalent mechanism of nicotinic facilitation of glutamatergic transmission in cortico-limbic circuits. By imaging gene chimeric co-cultures from mouse, we examined the role of α7* nAChRs mediated cholinergic modulation of glutamate release and synaptic vesicle organization in ventral hippocampal projections. We directly visualized exogenous and endogenous cholinergic facilitation of glutamate release in this specialized preparation of circuits in vitro. Disrupting α7* nAChRs mediated cholinergic signaling genetically or pharmacologically diminished cholinergic facilitation of glutamate release at presynaptic terminals. Alteration of α7* nAChRs mediated cholinergic signaling along glutamatergic axons also decreased functional synaptic vesicle clustering to presynaptic terminals. These findings suggest that presynaptic α7* nAChRs contribute to cholinergic modulation of glutamate release and synaptic vesicle organization.


Asunto(s)
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Axones/metabolismo , Colinérgicos , Ácido Glutámico , Hipocampo/metabolismo , Ratones , Receptores Nicotínicos/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
6.
Mol Cell Neurosci ; 43(4): 403-13, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20123019

RESUMEN

Activation of nascent receptor tyrosine kinases within the secretory pathway has been reported, yet the consequences of intracellular activation are largely unexplored. We report that overexpression of the Trk neurotrophin receptors causes accumulation of autoactivated receptors in the ER-Golgi intermediate compartment. Autoactivated receptors exhibit inhibited Golgi-mediated processing and they inhibit Golgi-mediated processing of other co-expressed transmembrane proteins, apparently by inducing fragmentation of the Golgi apparatus. Signaling from G protein-coupled receptors is known to induce Trk transactivation. Transactivation of nascent TrkB in hippocampal neurons resulting from exposure to the neuropeptide PACAP caused Golgi fragmentation, whereas BDNF-dependent activation of TrkB did not. TrkB-mediated Golgi fragmentation employs a MEK-dependent signaling pathway resembling that implicated in regulation of Golgi fragmentation in mitotic cells. Neuronal Golgi fragments, in the form of dendritically localized Golgi outposts, are important determinants of dendritic growth and branching. The capacity of transactivated TrkB to enhance neuronal Golgi fragmentation may represent a novel mechanism regulating neural plasticity.


Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Vías Secretoras/fisiología , Western Blotting , Línea Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Microscopía Confocal , Fosforilación/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Transporte de Proteínas/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Transfección
7.
J Cell Biol ; 157(4): 679-91, 2002 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-12011113

RESUMEN

A central tenet of nerve growth factor (NGF) action that is poorly understood is its ability to mediate cytoplasmic signaling, through its receptor TrkA, that is initiated at the nerve terminal and conveyed to the soma. We identified an NGF-induced protein that we termed Pincher (pinocytic chaperone) that mediates endocytosis and trafficking of NGF and its receptor TrkA. In PC12 cells, overexpression of Pincher dramatically stimulated NGF-induced endocytosis of TrkA, unexpectedly at sites of clathrin-independent macropinocytosis within cell surface ruffles. Subsequently, a system of Pincher-containing tubules mediated the delivery of NGF/TrkA-containing vesicles to cytoplasmic accumulations. These vesicles selectively and persistently mediated TrkA-erk5 mitogen-activated protein kinase signaling. A dominant inhibitory mutant form of Pincher inhibited the NGF-induced endocytosis of TrkA, and selectively blocked TrkA-mediated cytoplasmic signaling of erk5, but not erk1/2, kinases. Our results indicate that Pincher mediates pinocytic endocytosis of functionally specialized NGF/TrkA endosomes with persistent signaling potential.


Asunto(s)
Membrana Celular/metabolismo , Endosomas/metabolismo , Chaperonas Moleculares/aislamiento & purificación , Factor de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/aislamiento & purificación , Neuronas/metabolismo , Pinocitosis/fisiología , Receptor trkA/metabolismo , Secuencia de Aminoácidos/genética , Animales , Secuencia de Bases/genética , Membrana Celular/ultraestructura , Endosomas/ultraestructura , Espacio Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica/fisiología , Microscopía Electrónica , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/ultraestructura , Células PC12 , Fosforilación , Transporte de Proteínas/genética , Ratas , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura
8.
Mol Brain ; 11(1): 2, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335006

RESUMEN

The adult brain actively controls its metabolic homeostasis via the circulatory system at the blood brain barrier interface. The mechanisms underlying the functional coupling from neuron to vessel remain poorly understood. Here, we established a novel method to genetically isolate the individual components of this coupling machinery using a combination of viral vectors. We first discovered a surprising non-uniformity of the glio-vascular structure in different brain regions. We carried out a viral injection screen and found that intravenous Canine Adenovirus 2 (CAV2) preferentially targeted perivascular astrocytes throughout the adult brain, with sparing of the hippocampal hilus from infection. Using this new intravenous method to target astrocytes, we selectively ablated these cells and observed severe defects in hippocampus-dependent contextual memory and the metabolically regulated process of hippocampal neurogenesis. Combined with AAV9 targeting of neurons and endothelial cells, all components of the neuro-glio-vascular machinery can be simultaneously labeled for genetic manipulation. Together, we demonstrate a novel method, which we term CATNAP (CAV/AAV Targeting of Neurons and Astrocytes Perivascularly), to target and manipulate the neuro-glio-vascular machinery in the adult brain.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/citología , Neuroglía/metabolismo , Neuronas/metabolismo , Adenovirus Caninos/metabolismo , Adulto , Animales , Astrocitos/citología , Astrocitos/metabolismo , Supervivencia Celular , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Femenino , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL
9.
Mol Biol Cell ; 15(1): 384-96, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14528013

RESUMEN

Receptor-mediated trafficking of cholesterol between lipoproteins and cells is a fundamental biological process at the organismal and cellular levels. In contrast to the well-studied pathway of LDL receptor-mediated endocytosis, little is known about the trafficking of high-density lipoprotein (HDL) cholesterol by the HDL receptor, scavenger receptor BI (SR-BI). SR-BI mediates HDL cholesteryl ester uptake in a process in which HDL lipids are selectively transferred to the cell membrane without the uptake and degradation of the HDL particle. We report here the cell surface locale where the trafficking of HDL cholesterol occurs. Fluorescence confocal microscopy showed SR-BI in patches and small extensions of the cell surface that were distinct from sites of caveolin-1 expression. Electron microscopy showed SR-BI in patches or clusters primarily on microvillar extensions of the plasma membrane. The organization of SR-BI in this manner suggests that this microvillar domain is a way station for cholesterol trafficking between HDL and cells. The types of phospholipids in this domain are unknown, but SR-BI is not strongly associated with classical membrane rafts rich in detergent-resistant saturated phospholipids. We speculate that SR-BI is in a more fluid membrane domain that will favor rapid cholesterol flux between the membrane and HDL.


Asunto(s)
Antígenos CD36/metabolismo , Proteínas Portadoras , Caveolinas/metabolismo , Extensiones de la Superficie Celular/metabolismo , Colesterol/metabolismo , Lipoproteínas HDL , Proteínas de la Membrana , Proteínas de Unión al ARN , Receptores Inmunológicos , Receptores de Lipoproteína/metabolismo , Animales , Transporte Biológico/fisiología , Células COS , Caveolas , Caveolina 1 , Células Cultivadas , Chlorocebus aethiops , Ratones , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Modelos Moleculares , Receptores Depuradores , Receptores Depuradores de Clase B
10.
eNeuro ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275713

RESUMEN

Altered neuregulin 1 (Nrg1)/ErbB signaling and glutamatergic hypofunction have been implicated in the pathophysiology of schizophrenia. Here, we employed gene chimeric ventral hippocampus (vHipp)-nucleus accumbens (nAcc) coculture from mouse, electrophysiology, immunocytochemistry, FM1-43 vesicle fusion, and electron microscopy techniques to examine the pre- and postsynaptic mechanisms of genetic deficits in Nrg1/ErbB signaling-induced glutamatergic dysfunctions. Reduced presynaptic type III Nrg1 expression along vHipp axons decreases the number of glutamate synapses and impairs GluA2 trafficking in the postsynaptic nAcc neurons, resulting in decreased frequency and amplitude of miniature EPSCs (mEPSCs). Reduced expression of axonal type III Nrg1 along vHipp projections also decreases functional synaptic vesicle (SV) clustering and vesicular trafficking to presynaptic vHipp axonal terminals. These findings suggest that Nrg1/ErbB signaling modulate glutamatergic transmission via both pre- and postsynaptic mechanisms.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Neurregulina-1/metabolismo , Núcleo Accumbens/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Técnicas de Cocultivo , Potenciales Postsinápticos Excitadores , Hipocampo/ultraestructura , Ratones Endogámicos C57BL , Ratones Transgénicos , Potenciales Postsinápticos Miniatura , Neurregulina-1/genética , Núcleo Accumbens/ultraestructura , Sinapsis/ultraestructura , Técnicas de Cultivo de Tejidos
11.
J Neurosci ; 25(21): 5236-47, 2005 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-15917464

RESUMEN

Retrograde signaling by neurotrophins is crucial for regulating neuronal phenotype and survival. The mechanism responsible for retrograde signaling has been elusive, because the molecular entities that propagate Trk receptor tyrosine kinase signals from the nerve terminal to the soma have not been defined. Here, we show that the membrane trafficking protein Pincher defines the primary pathway responsible for neurotrophin retrograde signaling in neurons. By both immunofluorescence confocal and immunoelectron microscopy, we find that Pincher mediates the formation of newly identified clathrin-independent macroendosomes for Trk receptors in soma, axons, and dendrites. Trk macroendosomes are derived from plasma membrane ruffles and subsequently processed to multivesicular bodies. Pincher similarly mediates macroendocytosis for NGF (TrkA) and BDNF (TrkB) in both peripheral (sympathetic) and central (hippocampal) neurons. A unique feature of Pincher-Trk endosomes is refractoriness to lysosomal degradation, which ensures persistent signaling through a critical effector of retrograde survival signaling, Erk5 (extracellular signal-regulated kinase 5). Using sympathetic neurons grown in chamber cultures, we find that block of Pincher function, which prevents Trk macroendosome formation, eliminates retrogradely signaled neuronal survival. Pincher is the first distinguishing molecular component of a novel mechanistic pathway for endosomal signaling in neurons.


Asunto(s)
Endocitosis/fisiología , Hipocampo/citología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Ganglio Cervical Superior/citología , Animales , Animales Recién Nacidos , Western Blotting/métodos , Supervivencia Celular/fisiología , Células Cultivadas , Diagnóstico por Imagen/métodos , Dinaminas/metabolismo , Embrión de Mamíferos , Endosomas/metabolismo , Endosomas/ultraestructura , Factor de Crecimiento Epidérmico/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Proteínas Fluorescentes Verdes/metabolismo , Lisosomas/metabolismo , Lisosomas/ultraestructura , Microscopía Confocal/métodos , Microscopía Inmunoelectrónica/métodos , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Biología Molecular/métodos , Neuronas/ultraestructura , Transporte de Proteínas/fisiología , Interferencia de ARN/fisiología , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Receptor trkA/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Transducción de Señal/fisiología , Transfección/métodos
12.
Elife ; 52016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26880547

RESUMEN

The cytomatrix at the active zone (CAZ) is a macromolecular complex that facilitates the supply of release-ready synaptic vesicles to support neurotransmitter release at synapses. To reveal the dynamics of this supply process in living synapses, we used super-resolution imaging to track single vesicles at voltage-clamped presynaptic terminals of retinal bipolar neurons, whose CAZ contains a specialized structure-the synaptic ribbon-that supports both fast, transient and slow, sustained modes of transmission. We find that the synaptic ribbon serves a dual function as a conduit for diffusion of synaptic vesicles and a platform for vesicles to fuse distal to the plasma membrane itself, via compound fusion. The combination of these functions allows the ribbon-type CAZ to achieve the continuous transmitter release required by synapses of neurons that carry tonic, graded visual signals in the retina.


Asunto(s)
Transporte Biológico , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Animales Modificados Genéticamente , Sustancias Macromoleculares , Microscopía , Técnicas de Placa-Clamp , Pez Cebra
13.
Nat Neurosci ; 14(9): 1135-41, 2011 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-21785435

RESUMEN

In vision, balance and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli while also transmitting graded information covering a wide range of stimulus intensity and must be able to sustain this signaling for long time periods. To meet these demands, specialized machinery for transmitter release, the synaptic ribbon, has evolved at the synaptic outputs of these neurons. We found that acute disruption of synaptic ribbons by photodamage to the ribbon markedly reduced both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate both slow and fast signaling at sensory synapses and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Retina/citología , Células Bipolares de la Retina/citología , Sinapsis/fisiología , Vesículas Sinápticas/fisiología , Oxidorreductasas de Alcohol , Animales , Biofisica , Proteínas Co-Represoras , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/farmacología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Exocitosis/fisiología , Técnicas In Vitro , Luz/efectos adversos , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Técnicas de Placa-Clamp , Péptidos/metabolismo , Péptidos/farmacología , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Unión Proteica/efectos de los fármacos , Células Bipolares de la Retina/ultraestructura , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Vesículas Sinápticas/ultraestructura , Factores de Tiempo , Urodelos
14.
Proc Natl Acad Sci U S A ; 104(30): 12270-5, 2007 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-17640889

RESUMEN

Why neurotrophins and their Trk receptors promote neuronal differentiation and survival whereas receptor tyrosine kinases for other growth factors, such as EGF, do not, has been a long-standing question in neurobiology. We provide evidence that one difference lies in the selective ability of Trk to generate long-lived signaling endosomes. We show that Trk endocytosis is distinguished from the classical clathrin-based endocytosis of EGF receptor (EGFR). Although Trk and EGFR each stimulate membrane ruffling, only Trk undergoes both selective and specific macroendocytosis at ruffles, which uniquely requires the Rho-GTPase, Rac, and the trafficking protein, Pincher. This process leads to Trk-signaling endosomes, which are immature multivesicular bodies that retain Rab5. In contrast, EGFR endosomes rapidly exchange Rab5 for Rab7, thereby transiting into late-endosomes/lysosomes for degradation. Sustained endosomal signaling by Trk does not reflect intrinsic differences between Trk and EGFR, because each elicits long-term Erk-kinase activation from the cell surface. Thus, a population of stable Trk endosomes, formed by specialized macroendocytosis in neurons, provides a privileged endosome-based system for propagation of signals to the nucleus.


Asunto(s)
Endocitosis , Endosomas/metabolismo , Receptor trkA/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rac/metabolismo , Animales , Membrana Celular/metabolismo , Endosomas/enzimología , Receptores ErbB/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células PC12 , Fosforilación , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión al GTP rac/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA