Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 71(1): 117-128.e3, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30008317

RESUMEN

To maintain genome stability, cells need to replicate their DNA before dividing. Upon completion of bulk DNA synthesis, the mitotic kinases CDK1 and PLK1 become active and drive entry into mitosis. Here, we have tested the hypothesis that DNA replication determines the timing of mitotic kinase activation. Using an optimized double-degron system, together with kinase inhibitors to enforce tight inhibition of key proteins, we find that human cells unable to initiate DNA replication prematurely enter mitosis. Preventing DNA replication licensing and/or firing causes prompt activation of CDK1 and PLK1 in S phase. In the presence of DNA replication, inhibition of CHK1 and p38 leads to premature activation of mitotic kinases, which induces severe replication stress. Our results demonstrate that, rather than merely a cell cycle output, DNA replication is an integral signaling component that restricts activation of mitotic kinases. DNA replication thus functions as a brake that determines cell cycle duration.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Fase S , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Activación Enzimática , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Quinasa Tipo Polo 1
2.
Mol Cell ; 53(5): 843-53, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24582498

RESUMEN

During the cell cycle, DNA duplication in S phase must occur before a cell divides in mitosis. In the intervening G2 phase, mitotic inducers accumulate, which eventually leads to a switch-like rise in mitotic kinase activity that triggers mitotic entry. However, when and how activation of the signaling network that promotes the transition to mitosis occurs remains unclear. We have developed a system to reduce cell-cell variation and increase accuracy of fluorescence quantification in single cells. This allows us to use immunofluorescence of endogenous marker proteins to assess kinetics from fixed cells. We find that mitotic phosphorylations initially occur at the completion of S phase, showing that activation of the mitotic entry network does not depend on protein accumulation through G2. Our data show insights into how mitotic entry is linked to the completion of S phase and forms a quantitative resource for mathematical models of the human cell cycle.


Asunto(s)
Fase G2/genética , Mitosis/genética , Fase S/genética , Proteínas Bacterianas/química , Ciclo Celular , Línea Celular Tumoral , Centrosoma/metabolismo , Replicación del ADN , Fibronectinas/química , Marcadores Genéticos , Humanos , Procesamiento de Imagen Asistido por Computador , Cinética , Cinetocoros/química , Proteínas Luminiscentes/química , Microscopía Fluorescente , Modelos Teóricos , Fosforilación , ARN Interferente Pequeño/metabolismo , Factores de Tiempo
3.
Nucleic Acids Res ; 48(10): 5777-5787, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32352518

RESUMEN

Ligand binding induces extensive spatial reorganization and clustering of the EphA2 receptor at the cell membrane. It has previously been shown that the nanoscale spatial distribution of ligands modulates EphA2 receptor reorganization, activation and the invasive properties of cancer cells. However, intracellular signaling downstream of EphA2 receptor activation by nanoscale spatially distributed ligands has not been elucidated. Here, we used DNA origami nanostructures to control the positions of ephrin-A5 ligands at the nanoscale and investigated EphA2 activation and transcriptional responses following ligand binding. Using RNA-seq, we determined the transcriptional profiles of human glioblastoma cells treated with DNA nanocalipers presenting a single ephrin-A5 dimer or two dimers spaced 14, 40 or 100 nm apart. These cells displayed divergent transcriptional responses to the differing ephrin-A5 nano-organization. Specifically, ephrin-A5 dimers spaced 40 or 100 nm apart showed the highest levels of differential expressed genes compared to treatment with nanocalipers that do not present ephrin-A5. These findings show that the nanoscale organization of ephrin-A5 modulates transcriptional responses to EphA2 activation.


Asunto(s)
Nanoestructuras , Receptor EphA2/metabolismo , Transcripción Genética , Línea Celular Tumoral , ADN/química , Efrina-A5/metabolismo , Humanos , Ligandos , Fosforilación , RNA-Seq
4.
EMBO J ; 36(14): 2161-2176, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28607002

RESUMEN

After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM-/ATR-dependent signaling that inhibits mitosis-promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR-dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET-based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re-activation. These phosphorylations are rapidly counteracted by the chromatin-bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Proteína Fosfatasa 2C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Humanos , Modelos Biológicos , Modelos Teóricos , Fosforilación , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito , Quinasa Tipo Polo 1
5.
Proc Natl Acad Sci U S A ; 108(4): 1639-44, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21220342

RESUMEN

Pathogenic Yersinia species suppress the host immune response by using a plasmid-encoded type III secretion system (T3SS) to translocate virulence proteins into the cytosol of the target cells. T3SS-dependent protein translocation is believed to occur in one step from the bacterial cytosol to the target-cell cytoplasm through a conduit created by the T3SS upon target cell contact. Here, we report that T3SS substrates on the surface of Yersinia pseudotuberculosis are translocated into target cells. Upon host cell contact, purified YopH coated on Y. pseudotuberculosis was specifically and rapidly translocated across the target-cell membrane, which led to a physiological response in the infected cell. In addition, translocation of externally added YopH required a functional T3SS and a specific translocation domain in the effector protein. Efficient, T3SS-dependent translocation of purified YopH added in vitro was also observed when using coated Salmonella typhimurium strains, which implies that T3SS-mediated translocation of extracellular effector proteins is conserved among T3SS-dependent pathogens. Our results demonstrate that polarized T3SS-dependent translocation of proteins can be achieved through an intermediate extracellular step that can be reconstituted in vitro. These results indicate that translocation can occur by a different mechanism from the assumed single-step conduit model.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Yersinia pseudotuberculosis/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Western Blotting , Calcio/metabolismo , Membrana Celular/ultraestructura , Citosol/microbiología , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Microscopía Inmunoelectrónica , Mutación , Neutrófilos/metabolismo , Neutrófilos/microbiología , Plásmidos/genética , Transporte de Proteínas , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/fisiología
6.
Methods Cell Biol ; 182: 187-197, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38359976

RESUMEN

Replication stress risks genomic integrity. Depending on the level, replication stress can lead to slower progression through S phase and entry into G2 phase with DNA damage. In G2 phase, cells either recover and eventually enter mitosis or permanently withdraw from the cell cycle. Here we describe a method to detect cell cycle distribution, replication stress and cell cycle exit from G2 phase using fluorescence microscopy. We provide a script to automate the analysis using ImageJ. The focus has been to make a script and setup that is accessible to people without extensive computer knowledge.


Asunto(s)
Fase G2 , Mitosis , Humanos , Ciclo Celular/genética , Daño del ADN , Microscopía Fluorescente , Replicación del ADN
7.
Genome Biol ; 25(1): 143, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822412

RESUMEN

BACKGROUND: Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. RESULTS: Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. CONCLUSIONS: Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Proteína de la Leucemia Mieloide-Linfoide/genética , Pirazoles/farmacología , Pirazoles/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ciclo Celular/efectos de los fármacos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética
8.
Cell Microbiol ; 11(12): 1750-67, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19681909

RESUMEN

One important feature of Yersinia pseudotuberculosis that enables resistance against the host immune defence is delivery of the antiphagocytic effectors YopH and YopE into phagocytic cells. The tyrosine phosphatase YopH influences integrin signalling, and YopE impairs cytoskeletal dynamics by inactivating Rho GTPases. Here, we report the impact of these effectors on internalization by dendritic cells (DCs), which internalize antigens to orchestrate host immune responses. We found that this pathogen resists internalization by DCs via YopE. YopH that is important for blocking phagocytosis by macrophages and neutrophils and which is also present inside the DCs does not contribute to the resistance. However, the YopH targets Fyb and p130Cas show higher expression levels in macrophages than in DCs. Furthermore, live cell microscopy revealed that the cells internalize Y. pseudotuberculosis in different ways: the macrophages utilize a locally restricted receptor-mediated zipper mechanism, whereas DCs utilize macropinocytosis involving constitutive ruffling that randomly catches bacteria into membrane folds. We conclude that YopH impacts early phagocytic signalling from the integrin receptor to which the bacterium binds and that this tight receptor-mediated stimulation is absent in DC macropinocytosis. Inactivation of cytoskeletal dynamics by YopE affects ruffling activity and hence also internalization. The different modes of internalization can be coupled to the major functions of these respective cell types: elimination by phagocytosis and antigen sampling.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Células Dendríticas/metabolismo , Macrófagos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Factores de Virulencia/metabolismo , Infecciones por Yersinia pseudotuberculosis/inmunología , Infecciones por Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/fisiología , Animales , Proteínas de la Membrana Bacteriana Externa/inmunología , Técnicas de Cultivo de Célula , Línea Celular , Células Dendríticas/citología , Células Dendríticas/inmunología , Femenino , Interacciones Huésped-Patógeno , Humanos , Macrófagos/citología , Macrófagos/inmunología , Ratones , Fagocitosis , Proteínas Tirosina Fosfatasas/inmunología , Virulencia , Factores de Virulencia/inmunología , Yersinia pseudotuberculosis/citología , Yersinia pseudotuberculosis/patogenicidad , Infecciones por Yersinia pseudotuberculosis/microbiología
9.
Cell Chem Biol ; 26(10): 1436-1449.e5, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31447351

RESUMEN

RNA associates extensively with chromatin and can influence its structure; however, the potential role of the negative charges of RNA on chromatin structure remains unknown. Here, we demonstrate that RNA prevents precipitation of histones and can attenuate electrostatic interactions between histones and DNA, thereby loosening up the chromatin structure. This effect is independent of the sequence of RNA but dependent on its single-stranded nature, length, concentration, and negative charge. Opening and closure of chromatin by RNA occurs rapidly (within minutes) and passively (in permeabilized cells), in agreement with electrostatics. Accordingly, chromatin compaction following removal of RNA can be prevented by high ionic strength or neutralization of the positively charged histone tails by hyperacetylation. Finally, LINE1 repeat RNAs bind histone H2B and can decondense chromatin. We propose that RNA regulates chromatin opening and closure by neutralizing the positively charged tails of histones, reducing their electrostatic interactions with DNA.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Histonas/química , Histonas/metabolismo , ARN/química , ARN/metabolismo , Cromatina/genética , Humanos , Células Tumorales Cultivadas
10.
Cell Biochem Biophys ; 46(3): 201-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17272848

RESUMEN

The dependence of Escherichia coli membrane H+ conductance (Gm H+) with a steady-state pH in the presence and absence of an external source of energy (glucose) was studied, when cells were grown under anaerobic and aerobic conditions, with an assay pH of 7.0. Energy-dependent H+ efflux by intact cells growing at pH of 4.5-7.5 was also measured. The elevated H+ conductance and lowered H+ flux were shown for cells growing in acidic pH and under anaerobic conditions, when bacteria were fermenting glucose. The atp mutant, which is deprived of the F0F1- adenosine triphosphatase, had less Gm H+ independent of growth conditions. In contrast with wild-type or precursor strain, a remarkable difference in Gm H+ for atp mutant was observed between aerobic and anaerobic conditions; such a difference was significant at pH 4.5. These results could indicate distinguishing pathways determining Gm H+ under anaerobic conditions after the fermentation of glucose at different pH and an input of the F0F1-adenosine triphosphatase in Gm H+. In addition, the effect of osmotic stress was demonstrated with grown cells. Gm H+ and H+ efflux both were increased after hyperosmotic stress at pH 7.5, and these changes were inhibited by N,N\'-dicyclohexylcarbodiimide, whereas these changes were lower in atp mutant. A role of the F0F1-adenosine triphosphatase in osmo-sensitivity of bacteria was confirmed under fermentative conditions.


Asunto(s)
Membrana Celular/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , ATPasas de Translocación de Protón/metabolismo , Protones , Aerobiosis , Anaerobiosis , Escherichia coli K12/genética , Escherichia coli K12/crecimiento & desarrollo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Presión Osmótica
11.
Methods Mol Biol ; 1342: 173-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26254923

RESUMEN

Immunofluorescence can be a powerful tool to detect protein levels, intracellular localization, and post-translational modifications. However, standard immunofluorescence provides only a still picture and thus lacks temporal information. Here, we describe a method to extract temporal information from immunofluorescence images of fixed cells. In addition, we provide an optional protocol that uses micropatterns, which increases the accuracy of the method. These methods allow assessing how protein levels, intracellular localization, and post-translational modifications change through the cell cycle.


Asunto(s)
Ciclo Celular , Técnica del Anticuerpo Fluorescente/métodos , Procesamiento Proteico-Postraduccional , Procesamiento de Imagen Asistido por Computador , Cinética
12.
Oncotarget ; 5(18): 8379-92, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25268741

RESUMEN

Picropodophyllin (PPP) is an anticancer drug undergoing clinical development in NSCLC. PPP has been shown to suppress IGF-1R signaling and to induce a G2/M cell cycle phase arrest but the exact mechanisms remain to be elucidated. The present study identified an IGF-1-independent mechanism of PPP leading to pro-metaphase arrest. The mitotic block was induced in human cancer cell lines and in an A549 xenograft mouse but did not occur in normal hepatocytes/mouse tissues. Cell cycle arrest by PPP occurred in vitro and in vivo accompanied by prominent CDK1 activation, and was IGF-1R-independent since it occurred also in IGF-1R-depleted and null cells. The tumor cells were not arrested in G2/M but in mitosis. Centrosome separation was prevented during mitotic entry, resulting in a monopolar mitotic spindle with subsequent prometaphase-arrest, independent of Plk1/Aurora A or Eg5, and leading to cell features of mitotic catastrophe. PPP also increased soluble tubulin and decreased spindle-associated tubulin within minutes, indicating that it interfered with microtubule dynamics. These results provide a novel IGF-1R-independent mechanism of antitumor effects of PPP.


Asunto(s)
Antineoplásicos/farmacología , Centrosoma/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Microtúbulos/efectos de los fármacos , Mitosis/efectos de los fármacos , Podofilotoxina/análogos & derivados , Receptores de Somatomedina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Proteína Quinasa CDC2 , Supervivencia Celular/efectos de los fármacos , Centrosoma/metabolismo , Ciclina B1/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Activación Enzimática , Células Hep G2 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Células MCF-7 , Microtúbulos/metabolismo , Podofilotoxina/farmacología , Interferencia de ARN , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Factores de Tiempo , Transfección , Tubulina (Proteína)/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA