RESUMEN
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzing the sixth step of glycolysis has been investigated for allosteric features that might be used as potential target for specific inhibition of Staphylococcus aureus (S.aureus). X-ray structure of bacterial enzyme for which a tunnel-like opening passing through the center previously proposed as an allosteric site has been subjected to six independent 500 ns long Molecular Dynamics simulations. Harmonic bond restraints were employed at key residues to underline the allosteric feature of this region. A noticeable reduction was observed in the mobility of NAD+ binding domains when restrictions were applied. Also, a substantial decrease in cross-correlations between distant Cα fluctuations was detected throughout the structure. Mutual information (MI) analysis revealed a similar decrease in the degree of correspondence in positional fluctuations in all directions everywhere in the receptor. MI between backbone and side-chain torsional variations changed its distribution profile and decreased considerably around the catalytic sites when restraints were employed. Principal component analysis clearly showed that the restrained state sampled a narrower range of conformations than apo state, especially in the first principal mode due to restriction in the conformational flexibility of NAD+ binding domain. Clustering the trajectory based on catalytic site residues displayed a smaller repertoire of conformations for restrained state compared to apo. Representative snapshots subjected to k-shortest pathway analysis revealed the impact of bond restraints on the allosteric communication which displayed distinct optimal and suboptimal pathways for two states, where observed frequencies of critical residues Gln51 and Val283 at the proposed site changed considerably.
Asunto(s)
NAD , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Sitio Alostérico , NAD/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Dominio Catalítico , Regulación AlostéricaRESUMEN
Three glycolytic enzymes phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GADPH) and pyruvate kinase (PK) that belong to Staphylococcus aureus were used as targets for screening a dataset composed of 7229 compounds of which 1416 were FDA-approved. Instead of catalytic sites, evolutionarily less conserved allosteric sites were targeted to identify compounds that would selectively bind the bacteria's glycolytic enzymes instead of the human host. Seven different allosteric sites provided by three enzymes were used in independent screening experiments via docking. For each of the seven sites, a total of 723 compounds were selected as the top 10% which displayed the highest binding affinities. All compounds were then united to yield the top 54 drug candidates shared by all seven sites. Next, 17 out of 54 were selected and subjected to in vitro experiments for testing their inhibition capability for antibacterial growth and enzymatic activity. Accordingly, four compounds displaying antibacterial growth inhibition above 40% were determined as Candesartan cilexetil, Montelukast (sodium), Dronedarone (hydrochloride) and Thonzonium (bromide). In a second round of experiment, Candesartan cilexetil and Thonzonium displayed exceptionally high killing efficiencies on two bacterial strains of S.aureus (methicillin-sensitive and methicillin-resistant) with concentrations as low as 4 µg/mL and 0.5 µg/mL. Yet, their enzymatic assays were not in accordance with their killing effectiveness. Different inhibitory effects was observed for each compound in each enzymatic assay. A more effective target strategy would be to screen for drug compounds that woud inhibit a combination of glycolytic enzymes observed in the glycolytic pathway.
RESUMEN
Mutual information and entropy transfer analysis employed on two inactive states of human beta-2 adrenergic receptor (ß2 -AR) unraveled distinct communication pathways. Previously, a so-called "highly" inactive state of the receptor was observed during 1.5 microsecond long molecular dynamics simulation where the largest intracellular loop (ICL3) was swiftly packed onto the G-protein binding cavity, becoming entirely inaccessible. Mutual information quantifying the degree of correspondence between backbone-Cα fluctuations was mostly shared between intra- and extra-cellular loop regions in the original inactive state, but shifted to entirely different regions in this latest inactive state. Interestingly, the largest amount of mutual information was always shared among the mobile regions. Irrespective of the conformational state, polar residues always contributed more to mutual information than hydrophobic residues, and also the number of polar-polar residue pairs shared the highest degree of mutual information compared to those incorporating hydrophobic residues. Entropy transfer, quantifying the correspondence between backbone-Cα fluctuations at different timesteps, revealed a distinctive pathway directed from the extracellular site toward intracellular portions in this recently exposed inactive state for which the direction of information flow was the reverse of that observed in the original inactive state where the mobile ICL3 and its intracellular surroundings drove the future fluctuations of extracellular regions.
Asunto(s)
Proteínas de Unión al GTP/química , Simulación de Dinámica Molecular , Receptores Adrenérgicos beta 2/química , Sitio Alostérico , Secuencias de Aminoácidos , Entropía , Proteínas de Unión al GTP/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Receptores Adrenérgicos beta 2/metabolismoRESUMEN
The tunnel region at triosephosphate isomerase (TIM)'s dimer interface, distant from its catalytic site, is a target site for certain benzothiazole derivatives that inhibit TIM's catalytic activity in Trypanosoma cruzi, the parasite that causes Chagas disease. We performed multiple 100-ns molecular-dynamics (MD) simulations and elastic network modeling (ENM) on both apo and complex structures to shed light on the still unclear inhibitory mechanism of one such inhibitor, named bt10. Within the time frame of our MD simulations, we observed stabilization of aromatic clusters at the dimer interface and enhancement of intersubunit hydrogen bonds in the presence of bt10, which point to an allosteric effect rather than destabilization of the dimeric structure. The collective dynamics dictated by the topology of TIM is known to facilitate the closure of its catalytic loop over the active site that is critical for substrate entrance and product release. We incorporated the ligand's effect on vibrational dynamics by applying mixed coarse-grained ENM to each one of 54,000 MD snapshots. Using this computationally efficient technique, we observed altered collective modes and positive shifts in eigenvalues due to the constraining effect of bt10 binding. Accordingly, we observed allosteric changes in the catalytic loop's dynamics, flexibility, and correlations, as well as the solvent exposure of catalytic residues. A newly (to our knowledge) introduced technique that performs residue-based ENM scanning of TIM revealed the tunnel region as a key binding site that can alter global dynamics of the enzyme.
Asunto(s)
Proteínas Protozoarias/antagonistas & inhibidores , Triosa-Fosfato Isomerasa/antagonistas & inhibidores , Regulación Alostérica , Biocatálisis , Dominio Catalítico , Dimerización , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Análisis de Componente Principal , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Solventes/química , Triosa-Fosfato Isomerasa/química , Triosa-Fosfato Isomerasa/metabolismo , Trypanosoma cruziRESUMEN
BACKGROUND: To understand the effect of the long intracellular loop 3 (ICL3) on the intrinsic dynamics of human ß2-adrenergic receptor, molecular dynamics (MD) simulations were performed on two different models, both of which were based on the inactive crystal structure in complex with carazolol (after removal of carazolol and T4-lysozyme). In the so-called loop model, the ICL3 region that is missing in available crystal structures was modeled as an unstructured loop of 32-residues length, whereas in the clipped model, the two open ends were covalently bonded to each other. The latter model without ICL3 was taken as a reference, which has also been commonly used in recent computational studies. Each model was embedded into POPC bilayer membrane with explicit water and subjected to a 1 µs molecular dynamics (MD) simulation at 310 K. RESULTS: After around 600 ns, the loop model started a transition to a "very inactive" conformation, which is characterized by a further movement of the intracellular half of transmembrane helix 6 (TM6) towards the receptor core, and a close packing of ICL3 underneath the membrane completely blocking the G-protein's binding site. Concurrently, the binding site at the extracellular part of the receptor expanded slightly with the Ser207-Asp113 distance increasing to 18 Å from 11 Å, which was further elaborated by docking studies. CONCLUSIONS: The essential dynamics analysis indicated a strong coupling between the extracellular and intracellular parts of the intact receptor, implicating a functional relevance for allosteric regulation. In contrast, no such transition to the "very inactive" state, nor any structural correlation, was observed in the clipped model without ICL3. Furthermore, elastic network analysis using different conformers for the loop model indicated a consistent picture on the specific ICL3 conformational change being driven by global modes.
Asunto(s)
Receptores Adrenérgicos beta 2/química , Asparagina/metabolismo , Sitios de Unión , Epinefrina/farmacología , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores Adrenérgicos beta 2/metabolismo , Serina/metabolismoRESUMEN
The effect of perturbation at the allosteric site was investigated through several replicas of molecular dynamics (MD) simulations conducted on bacterial phosphofructokinase (SaPFK). In our previous work, an alternative binding site was estimated to be allosteric in addition to the experimentally reported one. To highlight the effect of both allosteric sites on receptor's dynamics, MD runs were carried out on apo forms with and without perturbation. Perturbation was achieved via incorporating multiple bond restraints for residue pairs located at the allosteric site. Restraints applied to the predicted site caused one dimer to stiffen, whereas an increase in mobility was detected in the same dimer when the experimentally resolved site was restrained. Fluctuations in Cα-Cα distances which is used to disclose residues with high potential of communication indicated a marked increase in signal transmission within each dimer as the receptor switched to a restrained state. Cross-correlation of positional fluctuations indicated an overall decrease in the magnitude of both positive and negative correlations when restraints were employed on the predicted allosteric site whereas an exact opposite effect was observed for the reported site. Finally, mutual correspondence between positional fluctuations noticeably increased with restraints on predicted allosteric site, whereas an opposite effect was observed for restraints applied on experimentally reported one. In view of these findings, it is clear that the perturbation of either one of two allosteric sites effected the dynamics of the receptor with a distinct and contrasting character.
Asunto(s)
Fosfofructoquinasas , Staphylococcus aureus , Regulación Alostérica , Sitio Alostérico , Sitios de Unión , Simulación de Dinámica Molecular , Fosfofructoquinasas/química , Staphylococcus aureus/enzimologíaRESUMEN
Drug repositioning has recently become one of the widely used drug design approaches in proposing alternative compounds with potentially fewer side effects. In this study, structure-based pharmacophore modelling and docking was used to screen existing drug molecules to bring forward potential modulators for ligand-binding domain of human glucocorticoid receptor (hGR). There exist several drug molecules targeting hGR, yet their apparent side effects still persist. Our goal was to disclose new compounds via screening existing drug compounds to bring forward fast and explicit solutions. The so-called shared pharmacophore model was created using the most persistent pharmacophore features shared by several crystal structures of the receptor. The shared model was first used to screen a small database of 75 agonists and 300 antagonists/decoys, and exhibited a successful outcome in its ability to distinguish agonists from antagonists/decoys. Then, it was used to screen a database of over 5000 molecules composed of FDA-approved, worldwide used and investigational drug compounds. A total of 110 compounds satisfying the pharmacophore requirements were subjected to different docking experiments for further assessment of their binding ability. In the final hit list of 54 compounds which fulfilled all scoring criteria, 19 of them were nonsteroidal and when further investigated, each presented a unique scaffold with little structural resemblance to any known nonsteroidal GR modulators. Independent 100 ns long MD simulations conducted on three selected drug candidates in complex with hGR displayed stable conformations incorporating several hydrogen bonds common to all three compounds and the reference molecule dexamethasone.Communicated by Ramaswamy H. Sarma.
Asunto(s)
Reposicionamiento de Medicamentos , Relación Estructura-Actividad Cuantitativa , Humanos , Simulación del Acoplamiento Molecular , Receptores de Glucocorticoides , Simulación de Dinámica Molecular , LigandosRESUMEN
Likelihood of new allosteric sites for glycolytic enzymes, phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GADPH) and pyruvate kinase (PK) was evaluated for bacterial, parasitic and human species. Allosteric effect of a ligand binding at a site was revealed on the basis of low-frequency normal modes via Cα-harmonic residue network model. In bacterial PFK, perturbation of the proposed allosteric site outperformed the known allosteric one, producing a high amount of stabilization or reduced dynamics, on all catalytic regions. Another proposed allosteric spot at the dimer interface in parasitic PFK exhibited major stabilization effect on catalytic regions. In parasitic GADPH, the most desired allosteric response was observed upon perturbation of its tunnel region which incorporated key residues for functional regulation. Proposed allosteric site in bacterial PK produced a satisfactory allosteric response on all catalytic regions, whereas in human and parasitic PKs, a partial inhibition was observed. Residue network model based solely on contact topology identified the 'hub residues' with high betweenness tracing plausible allosteric communication pathways between distant functional sites. For both bacterial PFK and PK, proposed sites accommodated hub residues twice as much as the known allosteric site. Tunnel region in parasitic GADPH with the strongest allosteric effect among species, incorporated the highest number of hub residues. These results clearly suggest a one-to-one correspondence between the degree of allosteric effect and the number of hub residues in that perturbation site, which increases the likelihood of its allosteric nature.
Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante) , Gliceraldehído-3-Fosfato Deshidrogenasas , Fosfofructoquinasas , Piruvato Quinasa , Regulación Alostérica , Sitio Alostérico , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Humanos , Fosfofructoquinasa-1/química , Fosfofructoquinasa-1/metabolismo , Fosfofructoquinasas/metabolismo , Piruvato Quinasa/metabolismoRESUMEN
This study investigates the structural distinctiveness of orthosteric ligand-binding sites of several human ß2 adrenergic receptor (ß2 -AR) conformations that have been obtained from a set of independent molecular dynamics (MD) simulations in the presence of intracellular loop 3 (ICL3). A docking protocol was established in order to classify each receptor conformation via its binding affinity to selected ligands with known efficacy. This work's main goal was to reveal many subtle features of the ligand-binding site, presenting alternative conformations, which might be considered as either active- or inactive-like but mostly specific for that ligand. Agonists, inverse agonists, and antagonists were docked to each MD conformer with distinct binding pockets, using different docking tools and scoring functions. Mostly favored receptor conformation persistently observed in all docking/scoring evaluations was classified as active or inactive based on the type of ligand's biological effect. Classified MD conformers were further tested for their ability to discriminate agonists from inverse agonists/antagonists, and several conformers were proposed as important targets to be used in virtual screening experiments that were often limited to a single X-ray structure.
Asunto(s)
Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2/metabolismo , Área Bajo la Curva , Sitios de Unión , Análisis por Conglomerados , Cristalografía por Rayos X , Agonismo Inverso de Drogas , Humanos , Estructura Terciaria de Proteína , Curva ROC , Receptores Adrenérgicos beta 2/metabolismoRESUMEN
Peptide- and protein-protein dockings were carried out on ß2-adrenergic receptor (ß2AR) to confirm the presence of transmembrane helix 6 (TM6) at the interface region between two ß2AR monomers, thereby its possible role in dimerization as suggested in numerous experimental and computational studies. Initially, a portion of TM6 was modeled as a peptide consisting of 23 residues and blindly docked to ß2AR monomer using a rigid body approach. Interestingly, all highest score conformations preferred to be near TM5 and TM6 regions of the receptor. Furthermore, longer peptides generated from a whole TM region were blindly docked to ß2AR using the same rigid body approach. This yielded a total of seven docked peptides, each derived from one TM helix. Most interestingly, for each peptide, TM6 was among the most preferred binding site region in the receptor. Besides the peptide dockings, two ß2AR monomers were blindly docked to each other using a full rigid-body search of docking orientations, which yielded a total of 16,000 dimer conformations. Each dimer was then filtered according to a fitness value based on the membrane topology. Among 149 complexes that met the topology requirements, 102 conformers were composed of two monomers oriented in opposite directions, whereas in the remaining 47, the monomers were arranged in parallel. Lastly, all 149 conformers were clustered based on a root mean-squared distance value of 6 Å. In agreement with the peptide results, the clustering yielded the largest population of conformers with the highest Z-score value having TM6 at the interface region.
Asunto(s)
Proteínas de la Membrana/química , Modelos Moleculares , Conformación Proteica , Receptores Adrenérgicos beta 2/química , Sitios de Unión , Proteínas de la Membrana/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Receptores Adrenérgicos beta 2/metabolismoRESUMEN
Novel high affinity compounds for human ß2-adrenergic receptor (ß2-AR) were searched among the clean drug-like subset of ZINC database consisting of 9,928,465 molecules that satisfy the Lipinski's rule of five. The screening protocol consisted of a high-throughput pharmacophore screening followed by an extensive amount of docking and rescoring. The pharmacophore model was composed of key features shared by all five inactive states of ß2-AR in complex with inverse agonists and antagonists. To test the discriminatory power of the pharmacophore model, a small-scale screening was initially performed on a database consisting of 117 compounds of which 53 antagonists were taken as active inhibitors and 64 agonists as inactive inhibitors. Accordingly, 7.3% of the ZINC database subset (729,413 compounds) satisfied the pharmacophore requirements, along with 44 antagonists and 17 agonists. Afterwards, all these hit compounds were docked to the inactive apo form of the receptor using various docking and scoring protocols. Following each docking experiment, the best pose was further evaluated based on the existence of key residues for antagonist binding in its vicinity. After final evaluations based on the human intestinal absorption (HIA) and the blood brain barrier (BBB) penetration properties, 62 hit compounds have been clustered based on their structural similarity and as a result four scaffolds were revealed. Two of these scaffolds were also observed in three high affinity compounds with experimentally known Ki values. Moreover, novel chemical compounds with distinct structures have been determined as potential ß2-AR drug candidates.