Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(7)2022 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-35408561

RESUMEN

Breast cancer (BrCa) is the most common malignancy in women and the second most significant cause of death from cancer. BrCa is one of the most challenging malignancies to treat, and it accounts for a large percentage of cancer-related deaths. The number of cases requiring more effective BrCa therapy has increased dramatically. Scientists are looking for more productive agents, such as organic combinations, for BrCa prevention and treatment because most chemotherapeutic agents are linked to cancer metastasis, the resistance of the drugs, and side effects. Natural compounds produced by living organisms promote apoptosis and inhibit metastasis, slowing the spread of cancer. As a result, these compounds may delay the spread of BrCa, enhancing survival rates and reducing the number of deaths caused by BrCa. Several natural compounds inhibit BrCa production while lowering cancer cell proliferation and triggering cell death. Natural compounds, in addition to therapeutic approaches, are efficient and potential agents for treating BrCa. This review highlights the natural compounds demonstrated in various studies to have anticancer properties in BrCa cells. Future research into biological anti-BrCa agents may pave the way for a new era in BrCa treatment, with natural anti-BrCa drugs playing a key role in improving BrCa patient survival rates.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Mama , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos
2.
mSphere ; 9(3): e0056523, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38391226

RESUMEN

Vaccination is important to prevent cholera. There are limited data comparing anti-O-specific polysaccharide (OSP) and anti-cholera toxin-specific immune responses following oral whole-cell with cholera toxin B-subunit (WC-rBS) vaccine (Dukoral, Valneva) administration in different age groups. An understanding of the differences is relevant because young children are less well protected by oral cholera vaccines than older children and adults. We compared responses in 50 adults and 49 children (ages 2 to <18) who were administered two doses of WC-rBS at a standard 14-day interval. All age groups had significant IgA and IgG plasma-blast responses to the OSP and cholera toxin B-subunit (CtxB) antigens that peaked 7 days after vaccination. However, in adults and older children (ages 5 to <18), antibody responses directed at the OSP antigen were largely IgA and IgG, with a minimal IgM response, while younger children (ages 2 to <5) mounted significant increases in IgM with minimal increases in IgA and IgG antibody responses 30 days after vaccination. In adults, anti-OSP and CtxB memory B-cell responses were detected after completion of the vaccination series, while children only mounted CtxB-specific IgG memory B-cell responses and no OSP-memory B-cell responses. In summary, children and adults living in a cholera endemic area mounted different responses to the WC-rBS vaccine, which may be a result of more prior exposure to Vibrio cholerae in older participants. The absence of class-switched antibody responses and memory B-cell responses to OSP may explain why protection wanes more rapidly after vaccination in young children compared to older vaccinees.IMPORTANCEVaccination is an important strategy to prevent cholera. Though immune responses targeting the OSP of V. cholerae are believed to mediate protection against cholera, there are limited data on anti-OSP responses after vaccination in different age groups, which is important as young children are not well protected by current oral cholera vaccines. In this study, we found that adults mounted memory B-cell responses to OSP, which were not seen in children. Adults and older children mounted class-switched (IgG and IgA) serum antibody responses to OSP, which were not seen in young children who had only IgM responses to OSP. The lack of class-switched antibody responses and memory B-cell responses to OSP in younger participants may be due to lack of prior exposure to V. cholerae and could explain why protection wanes more rapidly after vaccination in young children.


Asunto(s)
Vacunas contra el Cólera , Cólera , Vibrio cholerae O1 , Adulto , Niño , Humanos , Adolescente , Preescolar , Anciano , Recién Nacido , Cólera/prevención & control , Toxina del Cólera , Antígenos O , Inmunoglobulina M , Anticuerpos Antibacterianos , Inmunoglobulina A , Vacunación , Formación de Anticuerpos , Inmunoglobulina G
3.
Viruses ; 15(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36851629

RESUMEN

Coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has become a global pandemic, affecting the lives of billions of individuals [...].


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Corazón , Pandemias
4.
Mol Neurobiol ; 60(8): 4206-4231, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37052791

RESUMEN

Neurotrophins and neuropeptides are the essential regulators of peripheral nociceptive nerves that help to induce, sensitize, and maintain pain. Neuropeptide has a neuroprotective impact as it increases trophic support, regulates calcium homeostasis, and reduces excitotoxicity and neuroinflammation. In contrast, neurotrophins target neurons afflicted by ischemia, epilepsy, depression, and eating disorders, among other neuropsychiatric conditions. Neurotrophins are reported to inhibit neuronal death. Strategies maintained for "brain-derived neurotrophic factor (BDNF) therapies" are to upregulate BDNF levels using the delivery of protein and genes or compounds that target BDNF production and boosting BDNF signals by expanding with BDNF mimetics. This review discusses the mechanisms of neurotrophins and neuropeptides against acute neural damage as well as highlighting neuropeptides as a potential therapeutic agent against Parkinson's disease (PD), Huntington's disease (HD), Alzheimer's disease (AD), and Machado-Joseph disease (MJD), the signaling pathways affected by neurotrophins and their receptors in both standard and diseased CNS systems, and future perspectives that can lead to the potent application of neurotrophins and neuropeptides in neurodegenerative diseases (NDs).


Asunto(s)
Enfermedades Neurodegenerativas , Neuropéptidos , Humanos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Neuropéptidos/uso terapéutico , Neuropéptidos/metabolismo , Transducción de Señal/fisiología
5.
Ann Med Surg (Lond) ; 78: 103737, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35571678

RESUMEN

Despite many nations' best efforts to contain the so-called COVID-19 pandemic, the emergence of the SARS-CoV-2 Omicron strain (B.1.1.529) has been identified as a serious concern. After more than two years of COVID-19 pandemic and more than a year of worldwide vaccination efforts, the globe will not be free of COVID-19 variants such as Delta and Omicron variants. According to current statistics, the Omicron variant has more than 30 mutations when contrasted to other VOCs such as Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). High numbers of changes, particularly in the spike protein (S-Protein), raise worries about the virus's capacity to resist pre-existing immunity acquired by vaccination or spontaneous infection and antibody-based therapy. The Omicron variant raised international concerns, resuming travel bans and coming up with many questions about its severity, transmissibility, testing, detection, and vaccines efficiency against it. Additionally, inadequate health care infrastructures and many immunocompromised individuals increase the infection susceptibility. The current status of low vaccination rates will play a significant role in omicron spreading and create a fertile ground for producing new variants. As a result, this article emphasizes the mutational changes and their consequences. In addition, the potential preventing measures have been examined in detail.

6.
Health Sci Rep ; 5(3): e646, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35620547

RESUMEN

Background and Aims: Occupational exposure to wood dust leads to lung function abnormalities that are prominent causes of morbidity and disability of sawmill workers. The adverse respiratory effects of wood dust in sawmills have not been studied thoroughly in Bangladesh. This study aimed to investigate the effect of wood dust on the respiratory health of sawmill workers compared to controls as well as to determine the association of wood dust-exposing effects with inflammatory blood biomarkers, such as immunoglobulin E (IgE), erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP). Methods: This cross-sectional study included 100 sawmill workers from 25 distinct sawmills in various areas of Tangail, Bangladesh as well as 100 healthy volunteers who were adopted as a control group. Questionaries' survey and pulmonary function tests were performed face to face. Furthermore, after performing lung function tests, blood was drawn for further IgE, ESR, and CRP analyses. Results: Respiratory symptoms including breathlessness (32%), coughing (39%), sneezing (43%), chest tightness (30%), and itching (40%) were significantly higher in sawmill workers compared with control. Besides, sawmill workers' exposure to wood dust revealed a significantly lower level of spirometry parameters (forced vital capacity ​​​​​[FVC], FVC (%), forced expiratory volume in 1 s [FEV1], FEV1 (%), peak expiratory flow [PEF], PEF (%), FEV1/FVC (%), FEF25, FEF75, and FEF2575) compared with control and these spirometry parameters decreased with the increasing length of service. Moreover, a significantly higher level of IgE was observed in sawmill workers (290.90 ± 39.49) than in the control (120.95 ± 23.00). The high level of IgE suggests that the lower pulmonary function may be linked to allergic responses to wood dust among sawmill workers. Conclusion: This study suggested that exposure to wood dust can cause impairment of respiratory function along with high IgE levels.

7.
Biomed Res Int ; 2022: 7624189, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572728

RESUMEN

Avicennia alba is a mangrove plant that is extensively used to treat severe health issues. This focus of this study was to investigate the antidiabetic, anti-inflammatory, analgesic, and antidiarrheal activities of methanolic extract of A. alba leaves in Swiss albino mouse model. The antidiabetic, anti-inflammatory, analgesic, and antidiarrheal activities of the leaf extract were performed using alloxan-monohydrate, carrageenan-induced paw edema, acetic acid-induced writhing test and the hot plate method, and castor oil-induced method, respectively. The extract was used at doses ranging from 200 to 500 mg/kg to conduct the investigation. Leaf extract at 400 and 500 mg/kg showed potent antidiabetic activity in alloxan-induced diabetic mice. Advanced research is needed to control blood glucose levels and carrageenan paw edema-based anti-inflammatory effects. Both tests showed statistically significant result in a dose-dependent manner. The maximum dose (500 mg/kg) demonstrated potent analgesic activity in both writhing test and hot plate method. The plant extract also showed significant antidiarrheal activity at 400 and 500 mg/kg in experimental mice. However, more research is needed to explore the possible mechanisms and isolate the compounds associated with these bioactivities from the leaf extract of A. alba.


Asunto(s)
Avicennia , Diabetes Mellitus Experimental , Aloxano/efectos adversos , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Antiinflamatorios/uso terapéutico , Antiinflamatorios no Esteroideos/farmacología , Antidiarreicos/farmacología , Carragenina/efectos adversos , Diabetes Mellitus Experimental/tratamiento farmacológico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Ratones , Extractos Vegetales/uso terapéutico , Hojas de la Planta
8.
Mol Neurobiol ; 59(7): 4384-4404, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35545730

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia and cognitive impairment; yet, there is currently no treatment. A buildup of Aß, tau protein phosphorylation, oxidative stress, and inflammation in AD is pathogenic. The accumulation of amyloid-beta (Aß) peptides in these neurocognitive areas is a significant characteristic of the disease. Therefore, inhibiting Aß peptide aggregation has been proposed as the critical therapeutic approach for AD treatment. Resveratrol has been demonstrated in multiple studies to have a neuroprotective, anti-inflammatory, and antioxidant characteristic and the ability to minimize Aß peptides aggregation and toxicity in the hippocampus of Alzheimer's patients, stimulating neurogenesis and inhibiting hippocampal degeneration. Furthermore, resveratrol's antioxidant effect promotes neuronal development by activating the silent information regulator-1 (SIRT1), which can protect against the detrimental effects of oxidative stress. Resveratrol-induced SIRT1 activation is becoming more crucial in developing novel therapeutic options for AD and other diseases that have neurodegenerative characteristics. This review highlighted a better knowledge of resveratrol's mechanism of action and its promising therapeutic efficacy in treating AD. We also highlighted the therapeutic potential of resveratrol as an AD therapeutic agent, which is effective against neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Humanos , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Resveratrol/farmacología , Resveratrol/uso terapéutico , Sirtuina 1/metabolismo
9.
Oxid Med Cell Longev ; 2022: 5100904, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35450410

RESUMEN

Alzheimer's disease (AD) is a common neurodegenerative brain disorder that causes cellular response alterations, such as impaired cholinergic mechanism, amyloid-beta (Aß) AD aggregation, neuroinflammation, and several other pathways. AD is still the most prevalent form of dementia and affects many individuals across the globe. The exact cause of the disorder is obscure. There are yet no effective medications for halting, preventing, or curing AD's progress. Plenty of natural products are isolated from several sources and analyzed in preclinical and clinical settings for neuroprotective effects in preventing and treating AD. In addition, natural products and their derivatives have been promising in treating and preventing AD. Natural bioactive compounds play an active modulatory role in the pathological molecular mechanisms of AD development. This review focuses on natural products from plant sources and their derivatives that have demonstrated neuroprotective activities and maybe promising to treat and prevent AD. In addition, this article summarizes the literature pertaining to natural products as agents in the treatment of AD. Rapid metabolism, nonspecific targeting, low solubility, lack of BBB permeability, and limited bioavailability are shortcomings of most bioactive molecules in treating AD. We can use nanotechnology and nanocarriers based on different types of approaches.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Fármacos Neuroprotectores , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estudios Prospectivos
10.
Materials (Basel) ; 15(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35329610

RESUMEN

The field of nanotechnology is concerned with the creation and application of materials having a nanoscale spatial dimensioning. Having a considerable surface area to volume ratio, nanoparticles have particularly unique properties. Several chemical and physical strategies have been used to prepare zinc oxide nanoparticles (ZnO-NPs). Still, biological methods using green or natural routes in various underlying substances (e.g., plant extracts, enzymes, and microorganisms) can be more environmentally friendly and cost-effective than chemical and/or physical methods in the long run. ZnO-NPs are now being studied as antibacterial agents in nanoscale and microscale formulations. The purpose of this study is to analyze the prevalent traditional method of generating ZnO-NPs, as well as its harmful side effects, and how it might be addressed utilizing an eco-friendly green approach. The study's primary focus is on the potential biomedical applications of green synthesized ZnO-NPs. Biocompatibility and biomedical qualities have been improved in green-synthesized ZnO-NPs over their traditionally produced counterparts, making them excellent antibacterial and cancer-fighting drugs. Additionally, these ZnO-NPs are beneficial when combined with the healing processes of wounds and biosensing components to trace small portions of biomarkers linked with various disorders. It has also been discovered that ZnO-NPs can distribute and sense drugs. Green-synthesized ZnO-NPs are compared to traditionally synthesized ones in this review, which shows that they have outstanding potential as a potent biological agent, as well as related hazardous properties.

11.
Artículo en Inglés | MEDLINE | ID: mdl-35388308

RESUMEN

The present study examines the neuropharmacological and antidiabetic properties of methanol leaves extract of Lannea coromandelica in animal models. This study is carried out by elevated plus-maze apparatus, motor coordination, thiopental sodium has an induction role in sleeping time, hole board, hole cross, open field, antidiabetic studies. Mice were treated doses of 100, 150, and 200 mg/kg body weight in elevated plus-maze apparatus and motor coordination; 100 and 200 mg/kg body weight in sleeping time, hole cross, hole board, and open field tests; and 200 and 400 mg/kg body weight in the antidiabetic activity test. Extraction specifies a significantly decreased time duration and sleeping time in a thiopental sodium-induced sleeping time test. The experimental extract decreased locomotor and exploratory behaviors of mice in the open-field and hole-cross tests compared to the effects of the control. Furthermore, the extract increased sleeping time with a dose-dependent onset of action. The hole-board test extract also demonstrated a reduced number of head dips. The findings showed that L. coromandelica has potential neuropharmacological effects. In addition, in alloxan-induced diabetic mice, leaves extract at 200 and 400 mg/kg body weight revealed significant antidiabetic properties and could be used to manage blood glucose levels with more research.

12.
Chemosphere ; 307(Pt 3): 136020, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35985383

RESUMEN

Neurodegenerative diseases (NDDs) are conditions that cause neuron structure and/or function to deteriorate over time. Genetic alterations may be responsible for several NDDs. However, a multitude of physiological systems can trigger neurodegeneration. Several NDDs, such as Huntington's, Parkinson's, and Alzheimer's, are assigned to oxidative stress (OS). Low concentrations of reactive oxygen and nitrogen species are crucial for maintaining normal brain activities, as their increasing concentrations can promote neural apoptosis. OS-mediated neurodegeneration has been linked to several factors, including notable dysfunction of mitochondria, excitotoxicity, and Ca2+ stress. However, synthetic drugs are commonly utilized to treat most NDDs, and these treatments have been known to have side effects during treatment. According to providing empirical evidence, studies have discovered many occurring natural components in plants used to treat NDDs. Polyphenols are often safer and have lesser side effects. As, epigallocatechin-3-gallate, resveratrol, curcumin, quercetin, celastrol, berberine, genistein, and luteolin have p-values less than 0.05, so they are typically considered to be statistically significant. These polyphenols could be a choice of interest as therapeutics for NDDs. This review highlighted to discusses the putative effectiveness of polyphenols against the most prevalent NDDs.


Asunto(s)
Berberina , Curcumina , Enfermedades Neurodegenerativas , Drogas Sintéticas , Curcumina/uso terapéutico , Genisteína , Humanos , Luteolina/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Nitrógeno , Oxígeno , Polifenoles/farmacología , Polifenoles/uso terapéutico , Quercetina , Resveratrol , Drogas Sintéticas/uso terapéutico
13.
Artículo en Inglés | MEDLINE | ID: mdl-35832521

RESUMEN

Diabetes mellitus (DM) is a fatal metabolic disorder, and its prevalence has escalated in recent decades to a greater extent. Since the incidence and severity of the disease are constantly increasing, plenty of therapeutic approaches are being considered as a promising solution. Many dietary polyphenols have been reported to be effective against diabetes along with its accompanying vascular consequences by targeting multiple therapeutic targets. Additionally, the biocompatibility of these polyphenols raises questions about their use as pharmacological mediators. Nevertheless, the pharmacokinetic and biopharmaceutical properties of these polyphenols limit their clinical benefit as therapeutics. Pharmaceutical industries have attempted to improve compliance and therapeutic effects. However, nanotechnological approaches to overcome the pharmacokinetic and biopharmaceutical barriers associated with polyphenols as antidiabetic medications have been shown to be effective to improve clinical compliance and efficacy. Therefore, this review highlighted a comprehensive and up-to-date assessment of polyphenol nanoformulations in the treatment of diabetes and vascular consequences.

14.
Oxid Med Cell Longev ; 2022: 3201644, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046684

RESUMEN

Based on the diverse physiological influence, the impact of glial cells has become much more evident on neurological illnesses, resulting in the origins of many diseases appearing to be more convoluted than previously happened. Since neurological disorders are often random and unknown, hence the construction of animal models is difficult to build, representing a small fraction of people with a gene mutation. As a result, an immediate necessity is grown to work within in vitro techniques for examining these illnesses. As the scientific community recognizes cell-autonomous contributions to a variety of central nervous system illnesses, therapeutic techniques involving stem cells for treating neurological diseases are gaining traction. The use of stem cells derived from a variety of sources is increasingly being used to replace both neuronal and glial tissue. The brain's energy demands necessitate the reliance of neurons on glial cells in order for it to function properly. Furthermore, glial cells have diverse functions in terms of regulating their own metabolic activities, as well as collaborating with neurons via secreted signaling or guidance molecules, forming a complex network of neuron-glial connections in health and sickness. Emerging data reveals that metabolic changes in glial cells can cause morphological and functional changes in conjunction with neuronal dysfunction under disease situations, highlighting the importance of neuron-glia interactions in the pathophysiology of neurological illnesses. In this context, it is required to improve our understanding of disease mechanisms and create potential novel therapeutics. According to research, synaptic malfunction is one of the features of various mental diseases, and glial cells are acting as key ingredients not only in synapse formation, growth, and plasticity but also in neuroinflammation and synaptic homeostasis which creates critical physiological capacity in the focused sensory system. The goal of this review article is to elaborate state-of-the-art information on a few glial cell types situated in the central nervous system (CNS) and highlight their role in the onset and progression of neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso , Neuroglía , Animales , Sistema Nervioso Central , Humanos , Neurogénesis , Neuronas/fisiología
15.
Trop Med Infect Dis ; 7(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35448828

RESUMEN

Community transmission of SARS-CoV-2 in densely populated countries has been a topic of concern from the beginning of the pandemic. Evidence of community transmission of SARS-CoV-2 according to population density gradient and socio-economic status (SES) is limited. In June−September 2020, we conducted a descriptive longitudinal study to determine the community transmission of SARS-CoV-2 in high- and low-density areas in Dhaka city. The Secondary Attack Rate (SAR) was 10% in high-density areas compared to 20% in low-density areas. People with high SES had a significantly higher level of SARS-CoV-2-specific Immunoglobulin G (IgG) antibodies on study days 1 (p = 0.01) and 28 (p = 0.03) compared to those with low SES in high-density areas. In contrast, the levels of seropositivity of SARS-CoV-2-specific Immunoglobulin M (IgM) were comparable (p > 0.05) in people with high and low SES on both study days 1 and 28 in both high- and low-density areas. Due to the similar household size, no differences in the seropositivity rates depending on the population gradient were observed. However, people with high SES showed higher seroconversion rates compared to people with low SES. As no difference was observed based on population density, the SES might play a role in SARS-CoV-2 transmission, an issue that calls for further in-depth studies to better understand the community transmission of SARS-CoV-2.

16.
IJID Reg ; 2: 198-203, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35721426

RESUMEN

Design: A cross-sectional study was conducted amongst household members in 32 districts of Bangladesh to build knowledge about disease epidemiology and seroepidemiology of coronavirus disease 2019 (COVID-19). Objective: Antibody responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were assessed in people between April and October 2020. Results: The national seroprevalence rates of immunoglobulin G (IgG) and IgM were estimated to be 30.4% and 39.7%, respectively. In Dhaka, the seroprevalence of IgG was 35.4% in non-slum areas and 63.5% in slum areas. In areas outside of Dhaka, the seroprevalence of IgG was 37.5% in urban areas and 28.7% in rural areas. Between April and October 2020, the highest seroprevalence rate (57% for IgG and 64% for IgM) was observed in August. IgM antibody was more prevalent in younger participants, while older participants had more frequent IgG seropositivity. Follow-up specimens from patients with COVID-19 and their household members suggested that both IgG and IgM seropositivity increased significantly at day 14 and day 28 compared with day 1 after enrolment. Conclusions: SARS-CoV-2 had spread extensively in Bangladesh by October 2020. This highlights the importance of monitoring seroprevalence data, particularly with the emergence of new SARS-CoV-2 variants over time.

17.
Am J Trop Med Hyg ; 104(6): 2024-2030, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33872211

RESUMEN

Oral cholera vaccination protects against cholera; however, responses in young children are low and of short duration. The best current correlates of protection against cholera target Vibrio cholerae O-specific polysaccharide (anti-OSP), including vibriocidal responses. A cholera conjugate vaccine has been developed that induces anti-OSP immune responses, including memory B-cell responses. To address whether cholera conjugate vaccine would boost immune responses following oral cholera vaccination, we immunized mice with oral cholera vaccine Inaba CVD 103-HgR or buffer only (placebo) on day 0, followed by parenteral boosting immunizations on days 14, 42, and 70 with cholera conjugate vaccine Inaba OSP: recombinant tetanus toxoid heavy chain fragment or phosphate buffered saline (PBS)/placebo. Compared with responses in mice immunized with oral vaccine alone or intramuscular cholera conjugate vaccine alone, mice receiving combination vaccination developed significantly higher vibriocidal, IgM OSP-specific serum responses and OSP-specific IgM memory B-cell responses. A combined vaccination approach, which includes oral cholera vaccination followed by parenteral cholera conjugate vaccine boosting, results in increased immune responses that have been associated with protection against cholera. These results suggest that such an approach should be evaluated in humans.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Vacunas contra el Cólera/inmunología , Cólera/prevención & control , Vacunación/métodos , Vacunas Combinadas/inmunología , Administración Oral , Animales , Cólera/inmunología , Vacunas contra el Cólera/administración & dosificación , Femenino , Inmunización Secundaria , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Memoria Inmunológica , Ratones , Vacunas Combinadas/administración & dosificación , Vacunas Conjugadas/administración & dosificación , Vacunas Conjugadas/inmunología
18.
mSphere ; 6(2)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910997

RESUMEN

Cholera remains a major public health problem in resource-limited countries. Vaccination is an important strategy to prevent cholera, but currently available vaccines provide only 3 to 5 years of protection. Understanding immune responses to cholera antigens in naturally infected individuals may elucidate which of these are key to longer-term protection seen following infection. We recently identified Vibrio cholerae O1 sialidase, a neuraminidase that facilitates binding of cholera toxin to intestinal epithelial cells, as immunogenic following infection in two recent high-throughput screens. Here, we present systemic, mucosal, and memory immune responses to sialidase in cholera index cases and evaluated whether systemic responses to sialidase correlated with protection using a cohort of household contacts. Overall, we found age-related differences in antisialidase immune response following cholera. Adults developed significant plasma anti-sialidase IgA, IgG, and IgM responses following infection, whereas older children (≥5 years) developed both IgG and IgM responses, and younger children only developed IgM responses. Neither older children nor younger children had a rise in IgA responses over the convalescent phase of infection (day 7/day 30). On evaluation of mucosal responses and memory B-cell responses to sialidase, we found adults developed IgA antibody-secreting cell (ASC) and memory B-cell responses. Finally, in household contacts, the presence of serum anti-sialidase IgA, IgG, and IgM antibodies at enrollment was associated with a decrease in the risk of subsequent infection. These data show cholera patients develop age-related immune responses against sialidase and suggest that immune responses that target sialidase may contribute to protective immunity against cholera.IMPORTANCE Cholera infection can result in severe dehydration that may lead to death within a short period of time if not treated immediately. Vaccination is an important strategy to prevent the disease. Oral cholera vaccines provide 3 to 5 years of protection, with 60% protective efficacy, while natural infection provides longer-term protection than vaccination. Understanding the immune responses after natural infection is important to better understand immune responses to antigens that mediate longer-term protection. Sialidase is a neuraminidase that facilitates binding of cholera toxin to intestinal epithelial cells. We show here that patients with cholera develop systemic, mucosal, and memory B-cell immune responses to the sialidase antigen of Vibrio cholerae O1 and that plasma responses targeting this antigen correlate with protection.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Cólera/inmunología , Cólera/prevención & control , Memoria Inmunológica , Neuraminidasa/inmunología , Vibrio cholerae O1/enzimología , Vibrio cholerae O1/inmunología , Adolescente , Adulto , Factores de Edad , Células Productoras de Anticuerpos/inmunología , Linfocitos B/inmunología , Niño , Preescolar , Femenino , Humanos , Inmunoglobulina A/análisis , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Persona de Mediana Edad , Adulto Joven
19.
PLoS One ; 16(4): e0250446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33886672

RESUMEN

Interventional studies targeting environment enteropathy (EE) are impeded by the lack of appropriate, validated, non-invasive biomarkers of EE. Thus, we aimed to validate the association of potential biomarkers for EE with enteric infections and nutritional status in a longitudinal birth cohort study. We measured endotoxin core antibody (EndoCab) and soluble CD14 (sCD14) in serum, and myeloperoxidase (MPO) in feces using commercially available enzyme-linked immunosorbent assay (ELISA) kits. We found that levels of serum EndoCab and sCD14 increase with the cumulative incidence of enteric infections. We observed a significant correlation between the fecal MPO level in the children at 24 months of age with the total number of bacterial and viral infections, the total number of parasitic infections, and the total number of diarrheal episodes and diarrheal duration. We observed that the levels of serum EndoCab, sCD14, and fecal MPO at 3 months of age were significantly associated with whether children were malnourished at 18 months of age or not. Biomarkers such as fecal MPO, serum EndoCab and sCD14 in children at an early age may be useful as a measure of cumulative burden of preceding enteric infections, which are predictive of subsequent malnutrition status and may be useful non-invasive biomarkers for EE.


Asunto(s)
Biomarcadores/sangre , Diarrea/sangre , Enfermedades Gastrointestinales/sangre , Enfermedades Parasitarias/sangre , Peroxidasa/sangre , Anticuerpos/sangre , Preescolar , Estudios de Cohortes , Diarrea/microbiología , Diarrea/parasitología , Diarrea/virología , Endotoxinas/sangre , Heces/microbiología , Heces/parasitología , Heces/virología , Femenino , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/parasitología , Enfermedades Gastrointestinales/virología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/patología , Humanos , Lactante , Recién Nacido , Receptores de Lipopolisacáridos/sangre , Masculino , Estado Nutricional , Enfermedades Parasitarias/microbiología , Enfermedades Parasitarias/parasitología , Enfermedades Parasitarias/virología , Virosis/sangre , Virosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA