Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 186(11): 2456-2474.e24, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37137305

RESUMEN

Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.


Asunto(s)
Edición Génica , Células Madre Hematopoyéticas , Humanos , Diferenciación Celular , Sistemas CRISPR-Cas , Genoma , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Ingeniería Genética , Análisis de la Célula Individual
2.
Proc Natl Acad Sci U S A ; 119(34): e2207392119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969771

RESUMEN

Regulatory relationships between transcription factors (TFs) and their target genes lie at the heart of cellular identity and function; however, uncovering these relationships is often labor-intensive and requires perturbations. Here, we propose a principled framework to systematically infer gene regulation for all TFs simultaneously in cells at steady state by leveraging the intrinsic variation in the transcriptional abundance across single cells. Through modeling and simulations, we characterize how transcriptional bursts of a TF gene are propagated to its target genes, including the expected ranges of time delay and magnitude of maximum covariation. We distinguish these temporal trends from the time-invariant covariation arising from cell states, and we delineate the experimental and technical requirements for leveraging these small but meaningful cofluctuations in the presence of measurement noise. While current technology does not yet allow adequate power for definitively detecting regulatory relationships for all TFs simultaneously in cells at steady state, we investigate a small-scale dataset to inform future experimental design. This study supports the potential value of mapping regulatory connections through stochastic variation, and it motivates further technological development to achieve its full potential.


Asunto(s)
Regulación de la Expresión Génica , Modelos Biológicos , Factores de Transcripción , Simulación por Computador , Redes Reguladoras de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Phys Biol ; 18(1): 016001, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33215611

RESUMEN

A significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional molecular characterization of cells and populations, but to date, few mathematical models have attempted to integrate measurements from the single cell scale with other types of longitudinal data. Here, we present a framework that actionizes static outputs from a machine learning model and leverages these as measurements of state variables in a dynamic model of treatment response. We apply this framework to breast cancer cells to integrate single cell transcriptomic data with longitudinal bulk cell population (bulk time course) data. We demonstrate that the explicit inclusion of the phenotypic composition estimate, derived from single cell RNA-sequencing data (scRNA-seq), improves accuracy in the prediction of new treatments with a concordance correlation coefficient (CCC) of 0.92 compared to a prediction accuracy of CCC = 0.64 when fitting on longitudinal bulk cell population data alone. To our knowledge, this is the first work that explicitly integrates single cell clonally-resolved transcriptome datasets with bulk time-course data to jointly calibrate a mathematical model of drug resistance dynamics. We anticipate this approach to be a first step that demonstrates the feasibility of incorporating multiple data types into mathematical models to develop optimized treatment regimens from data.


Asunto(s)
Resistencia a Antineoplásicos/genética , Neoplasias/genética , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcriptoma , Neoplasias/tratamiento farmacológico
4.
Hum Mol Genet ; 21(5): 963-77, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22045699

RESUMEN

Endoplasmic reticulum (ER) stress has been implicated as an initiator or contributing factor in neurodegenerative diseases. The mechanisms that lead to ER stress and whereby ER stress contributes to the degenerative cascades remain unclear but their understanding is critical to devising effective therapies. Here we show that knockdown of Herp (Homocysteine-inducible ER stress protein), an ER stress-inducible protein with an ubiquitin-like (UBL) domain, aggravates ER stress-mediated cell death induced by mutant α-synuclein (αSyn) that causes an inherited form of Parkinson's disease (PD). Functionally, Herp plays a role in maintaining ER homeostasis by facilitating proteasome-mediated degradation of ER-resident Ca(2+) release channels. Deletion of the UBL domain or pharmacological inhibition of proteasomes abolishes the Herp-mediated stabilization of ER Ca(2+) homeostasis. Furthermore, knockdown or pharmacological inhibition of ER Ca(2+) release channels ameliorates ER stress, suggesting that impaired homeostatic regulation of Ca(2+) channels promotes a protracted ER stress with the consequent activation of ER stress-associated apoptotic pathways. Interestingly, sustained upregulation of ER stress markers and aberrant accumulation of ER Ca(2+) release channels were detected in transgenic mutant A53T-αSyn mice. Collectively, these data establish a causative link between impaired ER Ca(2+) homeostasis and chronic ER stress in the degenerative cascades induced by mutant αSyn and suggest that Herp is essential for the resolution of ER stress through maintenance of ER Ca(2+) homeostasis. Our findings suggest a therapeutic potential in PD for agents that increase Herp levels or its ER Ca(2+)-stabilizing action.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/fisiología , Proteínas de la Membrana/metabolismo , Estrés Fisiológico , alfa-Sinucleína/metabolismo , Animales , Canales de Calcio/metabolismo , Muerte Celular , Degradación Asociada con el Retículo Endoplásmico , Células HEK293 , Homeostasis , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas Mutantes/metabolismo , Células PC12 , Interferencia de ARN , Ratas , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , alfa-Sinucleína/genética
5.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464114

RESUMEN

Gene fusions are found as cancer drivers in diverse adult and pediatric cancers. Accurate detection of fusion transcripts is essential in cancer clinical diagnostics, prognostics, and for guiding therapeutic development. Most currently available methods for fusion transcript detection are compatible with Illumina RNA-seq involving highly accurate short read sequences. Recent advances in long read isoform sequencing enable the detection of fusion transcripts at unprecedented resolution in bulk and single cell samples. Here we developed a new computational tool CTAT-LR-fusion to detect fusion transcripts from long read RNA-seq with or without companion short reads, with applications to bulk or single cell transcriptomes. We demonstrate that CTAT-LR-fusion exceeds fusion detection accuracy of alternative methods as benchmarked with simulated and real long read RNA-seq. Using short and long read RNA-seq, we further apply CTAT-LR-fusion to bulk transcriptomes of nine tumor cell lines, and to tumor single cells derived from a melanoma sample and three metastatic high grade serous ovarian carcinoma samples. In both bulk and in single cell RNA-seq, long isoform reads yielded higher sensitivity for fusion detection than short reads with notable exceptions. By combining short and long reads in CTAT-LR-fusion, we are able to further maximize detection of fusion splicing isoforms and fusion-expressing tumor cells. CTAT-LR-fusion is available at https://github.com/TrinityCTAT/CTAT-LR-fusion/wiki.

6.
Nat Biotechnol ; 42(4): 582-586, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37291427

RESUMEN

Full-length RNA-sequencing methods using long-read technologies can capture complete transcript isoforms, but their throughput is limited. We introduce multiplexed arrays isoform sequencing (MAS-ISO-seq), a technique for programmably concatenating complementary DNAs (cDNAs) into molecules optimal for long-read sequencing, increasing the throughput >15-fold to nearly 40 million cDNA reads per run on the Sequel IIe sequencer. When applied to single-cell RNA sequencing of tumor-infiltrating T cells, MAS-ISO-seq demonstrated a 12- to 32-fold increase in the discovery of differentially spliced genes.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Isoformas de ARN , ADN Complementario/genética , Isoformas de ARN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Isoformas de Proteínas/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma , Perfilación de la Expresión Génica/métodos , ARN/genética
7.
Nat Commun ; 15(1): 32, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167262

RESUMEN

Single-cell transcriptomics has become the definitive method for classifying cell types and states, and can be augmented with genotype information to improve cell lineage identification. Due to constraints of short-read sequencing, current methods to detect natural genetic barcodes often require cumbersome primer panels and early commitment to targets. Here we devise a flexible long-read sequencing workflow and analysis pipeline, termed nanoranger, that starts from intermediate single-cell cDNA libraries to detect cell lineage-defining features, including single-nucleotide variants, fusion genes, isoforms, sequences of chimeric antigen and TCRs. Through systematic analysis of these classes of natural 'barcodes', we define the optimal targets for nanoranger, namely those loci close to the 5' end of highly expressed genes with transcript lengths shorter than 4 kB. As proof-of-concept, we apply nanoranger to longitudinal tracking of subclones of acute myeloid leukemia (AML) and describe the heterogeneous isoform landscape of thousands of marrow-infiltrating immune cells. We propose that enhanced cellular genotyping using nanoranger can improve the tracking of single-cell tumor and immune cell co-evolution.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Leucemia Mieloide Aguda , Humanos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Fenotipo , Perfilación de la Expresión Génica/métodos
8.
Nat Commun ; 14(1): 611, 2023 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-36739287

RESUMEN

Stimulator of interferon genes (STING) is an intracellular sensor of cyclic di-nucleotides involved in the innate immune response against pathogen- or self-derived DNA. STING trafficking is tightly linked to its function, and its dysregulation can lead to disease. Here, we systematically characterize genes regulating STING trafficking and examine their impact on STING-mediated responses. Using proximity-ligation proteomics and genetic screens, we demonstrate that an endosomal sorting complex required for transport (ESCRT) complex containing HGS, VPS37A and UBAP1 promotes STING degradation, thereby terminating STING-mediated signaling. Mechanistically, STING oligomerization increases its ubiquitination by UBE2N, forming a platform for ESCRT recruitment at the endosome that terminates STING signaling via sorting in the lysosome. Finally, we show that expression of a UBAP1 mutant identified in patients with hereditary spastic paraplegia and associated with disrupted ESCRT function, increases steady-state STING-dependent type I IFN responses in healthy primary monocyte-derived dendritic cells and fibroblasts. Based on these findings, we propose that STING is subject to a tonic degradative flux and that the ESCRT complex acts as a homeostatic regulator of STING signaling.


Asunto(s)
Proteínas de la Membrana , Nucleótidos Cíclicos , Humanos , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Inmunidad Innata , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/farmacología
9.
Methods Mol Biol ; 2394: 109-131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35094325

RESUMEN

The ability to track and isolate unique cell lineages from large heterogeneous populations increases the resolution at which cellular processes can be understood under normal and pathogenic states beyond snapshots obtained from single-cell RNA sequencing (scRNA-seq). Here, we describe the Control of Lineages by Barcode Enabled Recombinant Transcription (COLBERT) method in which unique single guide RNA (sgRNA) barcodes are used as functional tags to identify and recall specific lineages of interest. An sgRNA barcode is stably integrated and actively transcribed, such that all cellular progeny will contain the parental barcode and produce a functional sgRNA. The sgRNA barcode has all the benefits of a DNA barcode and added functionalities. Once a barcode pertaining to a lineage of interest is identified, the lineage of interest can be isolated using an activator variant of Cas9 (such as dCas9-VPR) and a barcode-matched sequence upstream of a fluorescent reporter gene. CRISPR activation of the fluorescent reporter will only occur in cells producing the matched sgRNA barcode, allowing precise identification and isolation of lineages of interest from heterogeneous populations.


Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Kinetoplastida , Sistemas CRISPR-Cas/genética , Linaje de la Célula/genética , Genes Reporteros , ARN Guía de Kinetoplastida/genética
10.
Front Immunol ; 13: 859032, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603167

RESUMEN

The therapeutic landscape across many cancers has dramatically improved since the introduction of potent targeted agents and immunotherapy. Nonetheless, success of these approaches is too often challenged by the emergence of therapeutic resistance, fueled by intratumoral heterogeneity and the immense evolutionary capacity inherent to cancers. To date, therapeutic strategies have attempted to outpace the evolutionary tempo of cancer but frequently fail, resulting in lack of tumor response and/or relapse. This realization motivates the development of novel therapeutic approaches which constrain evolutionary capacity by reducing the degree of intratumoral heterogeneity prior to treatment. Systematic development of such approaches first requires the ability to comprehensively characterize heterogeneous populations over the course of a perturbation, such as cancer treatment. Within this context, recent advances in functionalized lineage tracing approaches now afford the opportunity to efficiently measure multimodal features of clones within a tumor at single cell resolution, enabling the linkage of these features to clonal fitness over the course of tumor progression and treatment. Collectively, these measurements provide insights into the dynamic and heterogeneous nature of tumors and can thus guide the design of homogenization strategies which aim to funnel heterogeneous cancer cells into known, targetable phenotypic states. We anticipate the development of homogenization therapeutic strategies to better allow for cancer eradication and improved clinical outcomes.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapéutico , Células Clonales , Humanos , Neoplasias/patología
11.
Nat Cancer ; 2(7): 758-772, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34939038

RESUMEN

Lineage-tracing methods have enabled characterization of clonal dynamics in complex populations, but generally lack the ability to integrate genomic, epigenomic and transcriptomic measurements with live-cell manipulation of specific clones of interest. We developed a functionalized lineage-tracing system, ClonMapper, which integrates DNA barcoding with single-cell RNA sequencing and clonal isolation to comprehensively characterize thousands of clones within heterogeneous populations. Using ClonMapper, we identified subpopulations of a chronic lymphocytic leukemia cell line with distinct clonal compositions, transcriptional signatures and chemotherapy survivorship trajectories; patterns that were also observed in primary human chronic lymphocytic leukemia. The ability to retrieve specific clones before, during and after treatment enabled direct measurements of clonal diversification and durable subpopulation transcriptional signatures. ClonMapper is a powerful multifunctional approach to dissect the complex clonal dynamics of tumor progression and therapeutic response.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Línea Celular , Células Clonales , Genómica , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Transcriptoma
12.
Cancer Cell ; 39(2): 240-256.e11, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33417832

RESUMEN

Treatment-persistent residual tumors impede curative cancer therapy. To understand this cancer cell state we generated models of treatment persistence that simulate the residual tumors. We observe that treatment-persistent tumor cells in organoids, xenografts, and cancer patients adopt a distinct and reversible transcriptional program resembling that of embryonic diapause, a dormant stage of suspended development triggered by stress and associated with suppressed Myc activity and overall biosynthesis. In cancer cells, depleting Myc or inhibiting Brd4, a Myc transcriptional co-activator, attenuates drug cytotoxicity through a dormant diapause-like adaptation with reduced apoptotic priming. Conversely, inducible Myc upregulation enhances acute chemotherapeutic activity. Maintaining residual cells in dormancy after chemotherapy by inhibiting Myc activity or interfering with the diapause-like adaptation by inhibiting cyclin-dependent kinase 9 represent potential therapeutic strategies against chemotherapy-persistent tumor cells. Our study demonstrates that cancer co-opts a mechanism similar to diapause with adaptive inactivation of Myc to persist during treatment.


Asunto(s)
Adaptación Fisiológica/genética , Embrión de Mamíferos/fisiología , Proteínas Proto-Oncogénicas c-myc/genética , Adaptación Fisiológica/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Apoptosis/genética , Línea Celular , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/genética , Diapausa/efectos de los fármacos , Diapausa/genética , Embrión de Mamíferos/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Células MCF-7 , Ratones , Factores de Transcripción/genética , Transcripción Genética/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
13.
ACS Synth Biol ; 7(10): 2468-2474, 2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30169961

RESUMEN

Lineage tracking delivers essential quantitative insight into dynamic, probabilistic cellular processes, such as somatic tumor evolution and differentiation. Methods for high diversity lineage quantitation rely on sequencing a population of DNA barcodes. However, manipulation of specific individual lineages is not possible with this approach. To address this challenge, we developed a functionalized lineage tracing tool, Control of Lineages by Barcode Enabled Recombinant Transcription (COLBERT), that enables high diversity lineage tracing and lineage-specific manipulation of gene expression. This modular platform utilizes expressed barcode gRNAs to both track cell lineages and direct lineage-specific gene expression.


Asunto(s)
ARN Guía de Kinetoplastida/metabolismo , Secuencia de Bases , Proteína 9 Asociada a CRISPR/genética , Línea Celular Tumoral , Linaje de la Célula , Expresión Génica , Células HEK293 , Humanos , Lentivirus/fisiología , ARN Guía de Kinetoplastida/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA