Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835600

RESUMEN

Domain of unknown function (DUF) is a general term for many uncharacterized domains with two distinct features: relatively conservative amino acid sequence and unknown function of the domain. In the Pfam 35.0 database, 4795 (24%) gene families belong to the DUF type, yet, their functions remain to be explored. This review summarizes the characteristics of the DUF protein families and their functions in regulating plant growth and development, generating responses to biotic and abiotic stress, and other regulatory roles in plant life. Though very limited information is available about these proteins yet, by taking advantage of emerging omics and bioinformatic tools, functional studies of DUF proteins could be utilized in future molecular studies.


Asunto(s)
Biología Computacional , Proteínas , Proteínas/genética , Plantas , Secuencia de Aminoácidos , Estrés Fisiológico , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas
2.
BMC Plant Biol ; 21(1): 497, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34715792

RESUMEN

BACKGROUND: Seed flooding stress is one of the threatening environmental stressors that adversely limits soybean at the germination stage across the globe. The knowledge on the genetic basis underlying seed-flooding tolerance is limited. Therefore, we performed a genome-wide association study (GWAS) using 34,718 single nucleotide polymorphism (SNPs) in a panel of 243 worldwide soybean collections to identify genetic loci linked to soybean seed flooding tolerance at the germination stage. RESULTS: In the present study, GWAS was performed with two contrasting models, Mixed Linear Model (MLM) and Multi-Locus Random-SNP-Effect Mixed Linear Model (mrMLM) to identify significant SNPs associated with electrical conductivity (EC), germination rate (GR), shoot length (ShL), and root length (RL) traits at germination stage in soybean. With MLM, a total of 20, 40, 4, and 9 SNPs associated with EC, GR, ShL and RL, respectively, whereas in the same order mrMLM detected 27, 17, 13, and 18 SNPs. Among these SNPs, two major SNPs, Gm_08_11971416, and Gm_08_46239716 were found to be consistently connected with seed-flooding tolerance related traits, namely EC and GR across two environments. We also detected two SNPs, Gm_05_1000479 and Gm_01_53535790 linked to ShL and RL, respectively. Based on Gene Ontology enrichment analysis, gene functional annotations, and protein-protein interaction network analysis, we predicted eight candidate genes and three hub genes within the regions of the four SNPs with Cis-elements in promoter regions which may be involved in seed-flooding tolerance in soybeans and these warrant further screening and functional validation. CONCLUSIONS: Our findings demonstrate that GWAS based on high-density SNP markers is an efficient approach to dissect the genetic basis of complex traits and identify candidate genes in soybean. The trait associated SNPs could be used for genetic improvement in soybean breeding programs. The candidate genes could help researchers better understand the molecular mechanisms underlying seed-flooding stress tolerance in soybean.


Asunto(s)
Adaptación Fisiológica/genética , Deshidratación/genética , Inundaciones , Germinación/genética , Glycine max/genética , Sitios de Carácter Cuantitativo , Semillas/genética , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Genes de Plantas , Estudio de Asociación del Genoma Completo , Genotipo , Germinación/fisiología , Fenotipo , Polimorfismo de Nucleótido Simple , Semillas/fisiología , Glycine max/fisiología
3.
Int J Mol Sci ; 20(9)2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31058828

RESUMEN

In plants, lesion mimic mutants (LMMs) reveal spontaneous disease-like lesions in the absence of pathogen that constitutes powerful genetic material to unravel genes underlying programmed cell death (PCD), particularly the hypersensitive response (HR). However, only a few LMMs are reported in soybean, and no related gene has been cloned until now. In the present study, we isolated a new LMM named spotted leaf-1 (spl-1) from NN1138-2 cultivar through ethyl methanesulfonate (EMS) treatment. The present study revealed that lesion formation might result from PCD and excessive reactive oxygen species (ROS) accumulation. The chlorophyll content was significantly reduced but antioxidant activities, viz., superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), as well as the malondialdehyde (MDA) contents, were detected higher in spl-1 than in the wild-type. According to segregation analysis of mutant phenotype in two genetic populations, viz., W82×spl-1 and PI378692×spl-1, the spotted leaf phenotype of spl-1 is controlled by a single recessive gene named lm1. The lm1 locus governing mutant phenotype of spl-1 was first identified in 3.15 Mb genomic region on chromosome 04 through MutMap analysis, which was further verified and fine mapped by simple sequence repeat (SSR) marker-based genetic mapping. Genetic linkage analysis narrowed the genomic region (lm1 locus) for mutant phenotype to a physical distance of ~76.23 kb. By searching against the Phytozome database, eight annotated candidate genes were found within the lm1 region. qRT-PCR expression analysis revealed that, among these eight genes, only Glyma.04g242300 showed highly significant expression levels in wild-type relative to the spl-1 mutant. However, sequencing data of the CDS region showed no nucleotide difference between spl-1 and its wild type within the coding regions of these genes but might be in the non-coding regions such as 5' or 3' UTR. Hence, the data of the present study are in favor of Glyma.04g242300 being the possible candidate genes regulating the mutant phenotype of spl-1. However, further validation is needed to prove this function of the gene as well as its role in PCD, which in turn would be helpful to understand the mechanism and pathways involved in HR disease resistance of soybean.


Asunto(s)
Mapeo Cromosómico , Glycine max/genética , Fenotipo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Biomarcadores , Fenómenos Químicos , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ligamiento Genético , Marcadores Genéticos , Mutación , Pigmentos Biológicos , Hojas de la Planta/química , Carácter Cuantitativo Heredable , Glycine max/química
4.
Heliyon ; 9(12): e22954, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125427

RESUMEN

The goal of this study was to evaluate the antibacterial and cytotoxic effects of both the in vitro and in vivo plant part extracts of the medicinal plant Gynura procumbens. An effective protocol for regeneration and callus formation was developed using nodal segments and regenerated leaf explants, respectively. The highest fresh and dry weight calli were produced after four weeks of culture on Murashige and Skoog (MS) medium containing 2.0 mg/L BAP and 2.0 mg/L NAA, while the most shoots were produced on MS medium containing 1.0 mg/L BAP and 0.5 mg/L IAA. The in vitro shoots developed roots on MS media with 0.1 mg/L IBA. The antibacterial activity of extracts against various bacteria was examined to determine their significance (p < 0.05). The least significant difference (LSD) test results showed that the regenerated leaf extract had the highest antibacterial activity while the callus extract had the lowest. The minimum bactericidal concentration (MBC) and the minimum inhibitory concentration (MIC) were also established. Regenerated leaf extract had the highest toxicity and the lowest lethal concentration (LC50) value (1.21 ± 0.03 µg/mL) in a brine shrimp lethality bioassay. In contrast, callus extract had the lowest toxicity and the highest LC50 (11.09 ± 0.4 µg/mL). In addition, the in vitro cytotoxicity test results revealed that the callus and field leaf extracts had anti-cell-proliferative properties. The regenerated leaf and stem extract, however, could induce cell growth.

5.
3 Biotech ; 8(10): 422, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30305993

RESUMEN

Knowledge of biological evolution and genetic mechanisms is gained by studying the adaptation of bacteria to survive in adverse environmental conditions. In this regard, transcriptomic profiling of a glyphosate-tolerant Enterobacter strain NRS-1 was studied under four different treatments to investigate the gene-regulatory system for glyphosate tolerance. A total of 83, 83, 60 and 74 genes were up-regulated and 108, 87, 178 and 117 genes down-regulated under 60-NPG, 110-NPG, NaCl (355 mM) and HCl (pH 4.46) stress treatments, respectively. Complex gene network was identified to be involved in regulating tolerance to glyphosate. This study revealed that NRS-1 has gained glyphosate tolerance at the cost of osmotic and acidic resistance. The 25 differentially expressed genes are reported to may have partly changed the function for providing resistance to glyphosate directly, among them genes metK, mtbK, fdnG and wzb that might detoxify/degrade the glyphosate. However, under 110-NPG condition, NRS-1 might have utilized economical and efficient ways by depressing its metabolism and activity to pass through this stress. Hence, the present study provides insights into the genes involved in glyphosate tolerance, which can be effectively utilized to engineer herbicide-resistant crop varieties after their proper validation to manage weed growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA