Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Molecules ; 26(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299570

RESUMEN

Pancreatic cancer (PC) is the fourth leading cause of all cancer-related deaths. Despite major improvements in treating PC, low survival rate remains a major challenge, indicating the need for alternative approaches, including herbal medicine. Among medicinal plants is Ziziphus nummularia (family Rhamnaceae), which is a thorny shrub rich in bioactive molecules. Leaves of Ziziphus nummularia have been used to treat many pathological conditions, including cancer. However, their effects on human PC are still unknown. Here, we show that the treatment of human pancreatic ductal adenocarcinoma cells (Capan-2) with Ziziphus nummularia ethanolic extract (ZNE) (100-300 µg/mL) attenuated cell proliferation in a time- and concentration-dependent manner. Pretreatment with N-acetylcysteine, an ROS scavenger, attenuated the anti-proliferative effect of ZNE. In addition, ZNE significantly decreased the migratory and invasive capacity of Capan-2 with a concomitant downregulation of integrin α2 and increased cell-cell aggregation. In addition, ZNE inhibited in ovo angiogenesis as well as reduced VEGF and nitric oxide levels. Furthermore, ZNE downregulated the ERK1/2 and NF-κB signaling pathways, which are known to drive tumorigenic and metastatic events. Taken together, our results suggest that ZNE can attenuate the malignant phenotype of Capan-2 by inhibiting hallmarks of PC. Our data also provide evidence for the potential anticancer effect of Ziziphus nummularia, which may represent a new resource of novel anticancer compounds, especially ones that can be utilized for the management of PC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Extractos Vegetales/farmacología , Ziziphus , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Pancreáticas/patología , Extractos Vegetales/química , Ziziphus/química
2.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33260799

RESUMEN

Cardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood-brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin-angiotensin-aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.


Asunto(s)
Sistema Nervioso Autónomo/patología , Enfermedades Cardiovasculares/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Inflamación/complicaciones , Enfermedades Metabólicas/complicaciones , Animales , Sistema Nervioso Autónomo/microbiología , Sistema Nervioso Autónomo/fisiopatología , Enfermedades Cardiovasculares/microbiología , Enfermedades Cardiovasculares/fisiopatología , Enfermedad Crónica , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/fisiopatología , Frecuencia Cardíaca/fisiología , Humanos , Inflamación/microbiología , Inflamación/fisiopatología , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/fisiopatología
3.
Int J Mol Sci ; 21(14)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708284

RESUMEN

Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3',5'-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC's effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.


Asunto(s)
Movimiento Celular/genética , Proliferación Celular/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Contracción Muscular/genética , Contracción Muscular/fisiología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
4.
Biochim Biophys Acta ; 1830(4): 3121-35, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23352703

RESUMEN

BACKGROUND: In the present study, we investigated the effect of Salinomycin on the survival of three human breast cancer cell lines MCF-7, T47D and MDA-MB-231 grown in adherent culture conditions. METHODS: Cell viability was measured by Cell Titer-Glo and Trypan blue exclusion assay. Apoptosis was determined by caspase 3/7 activation, PARP cleavage and Annexin V staining. Cell cycle distribution was assessed by propidium iodide flow cytometry. Senescence was confirmed by measuring the senescence-associated ß-galactosidase activity. Changes in protein expression and histone hyperacetylation was determined by western blot and confirmed by immunofluorescence assay. RESULTS: Salinomycin was able to inhibit the growth of the three cell lines in time- and concentration-dependent manners. We showed that depending on the concentrations used, Salinomycin elicits different effects on the MDA-MB-231 cells. High concentrations of Salinomycin induced a G2 arrest, downregulation of survivin and triggered apoptosis. Interestingly, treatment with low concentrations of Salinomycin induced a transient G1 arrest at earlier time point and G2 arrest at later point and senescence associated with enlarged cellmorphology, upregulation of p21 protein, increase in histone H3 and H4 hyperacetylation and expression of SA-ß-Gal activity. Furthermore, we found that Salinomycin was able to potentiate the killing of the MCF-7 and MDA-MB-231 cells, by the chemotherapeutic agents, 4-Hydroxytamoxifen and frondo side A, respectively. CONCLUSION: Our data are the first to link senescence and histone modifications to Salinomycin. SIGNIFICANCE: This study provides a new insight to better understand the mechanism of action of Salinomycin, at least in breast cancer cells.


Asunto(s)
Antibacterianos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas del Citoesqueleto/metabolismo , Histonas/metabolismo , Piranos/farmacología , Acetilación , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Femenino , Fase G2/efectos de los fármacos , Glicósidos/farmacología , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/fisiología , Survivin , Triterpenos/farmacología
5.
Front Pharmacol ; 15: 1333865, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352148

RESUMEN

The present study was designed to evaluate the chemical composition, antioxidant, enzyme inhibition and cytotoxic properties of different extracts from aerial parts of V. diversifolium (family Scrophulariaceae), a plant that is native to Lebanon, Syria and Turkey. Six extracts, namely, hexane, dichloromethane (DCM), ethyl acetate (EtOAc), ethanol (EtOH), 70% EtOH, and water (aqueous) were prepared by maceration. The EtOH extract was predominated by the presence of rutin (4280.20 µg g-1) and p-coumaric acid (3044.01 µg g-1) while the highest accumulation of kaempferol-3-glucoside (1537.38 µg g-1), caffeic acid (130.13 µg g-1) and 4-hydroxy benzoic acid (465.93 µg g-1) was recorded in the 70% EtOH, aqueous, and EtOAc extracts, respectively. The EtOH (46.86 mg TE/g) and 70% EtOH (46.33 mg TE/g) extracts displayed the highest DPPH radical scavenging result. Both these extracts, along with the aqueous one, exerted the highest ABTS radical scavenging result (73.03-73.56 mg TE/g). The EtOH and 70% EtOH extracts revealed the most potent anti-AChE (2.66 and 2.64 mg GALAE/g) and anti-glucosidase (1.07 and 1.09 mmol ACAE/g) activities. The aqueous extract was the most efficacious in inhibiting the proliferation of prostate cancer (DU-145) cells with an IC50 of 8.71 µg/mL and a Selectivity Index of 3.7. In conclusion, this study appraised the use of V. diversifolium aerial parts as a potential therapeutic source for future development of phytopharmaceuticals that target specific oxidative stress-linked diseases including diabetes, cancer, cardiovascular disease, and Alzheimer's disease among others.

6.
Antioxidants (Basel) ; 12(7)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37507889

RESUMEN

Triple-negative breast cancer (TNBC), which lacks the expression of the three hormone receptors (i.e., estrogen receptor, progesterone receptor, and human epidermal growth factor receptor), is characterized by a high proliferative index, high invasiveness, poor prognosis, early relapse, and a tendency to be present in advanced stages. These characteristics rank TNBC among the most aggressive and lethal forms of breast cancer. The lack of the three receptors renders conventional hormonal therapy ineffective against TNBC. Moreover, there are no clinically approved therapies that specifically target TNBC, and the currently used chemotherapeutic agents, such as cisplatin, taxanes, and other platinum compounds, have a limited clinical effect and develop chemoresistance over time. Phytochemicals have shown efficacy against several types of cancer, including TNBC, by targeting several pathways involved in cancer development and progression. In this review, we focus on one phytochemical carnosol, a natural polyphenolic terpenoid with strong anti-TNBC effects and its ROS-dependent molecular mechanisms of action. We discuss how carnosol targets key pathways and proteins regulating the cell cycle, growth, epigenetic regulators, invasion, and metastasis of TNBC. This review identifies carnosol as a potential novel targeting protein degradation molecule.

7.
Sci Rep ; 13(1): 3743, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878973

RESUMEN

Hemorphins, short bioactive peptides produced by enzymatic cleavage of ß-hemoglobin, exhibit antihypertensive properties by inhibiting angiotensin-1 converting enzyme (ACE1). ACE1 is a key player in the renin-angiotensin system (RAS) and regulates blood pressure. ACE1 and its homolog, ACE2, which exhibit opposing activities in the RAS, share considerable similarity in their catalytic domains. The primary objective of this study was to identify and contrast the molecular mechanisms underlying the interaction of hemorphins of camels and that of other mammals with the two ACE homologs. In silico docking and molecular dynamics simulations were performed for ACE1 and ACE2, along with in vitro confirmatory assays for ACE1. The C-domain of ACE1, primarily involved in regulating blood pressure, was used along with the N-terminal peptidase domain of ACE2. The findings revealed conserved hemorphin interactions with equivalent regions of the two ACE homologs and differential residue-level interactions reflecting the substrate preferences of ACE1 and ACE2 considering their opposing functions. Therefore, conserved residue-level associations and implications of poorly conserved regions between the two ACE receptors may potentially guide the discovery of selective domain-specific inhibitors. The findings of this study can provide a basis for the treatment of related disorders in the future.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Peptidil-Dipeptidasa A , Animales , Sistema Renina-Angiotensina , Antihipertensivos , Presión Sanguínea , Camelus
8.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36986549

RESUMEN

Cancer is the second most life-threatening disease and has become a global health and economic problem worldwide. Due to the multifactorial nature of cancer, its pathophysiology is not completely understood so far, which makes it hard to treat. The current therapeutic strategies for cancer lack the efficacy due to the emergence of drug resistance and the toxic side effects associated with the treatment. Therefore, the search for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Propolis is a mixture of resinous compounds containing beeswax and partially digested exudates from plants leaves and buds. Its chemical composition varies widely depending on the bee species, geographic location, plant species, and weather conditions. Since ancient times, propolis has been used in many conditions and aliments for its healing properties. Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties. In recent years, extensive in vitro and in vivo studies have suggested that propolis possesses properties against several types of cancers. The present review highlights the recent progress made on the molecular targets and signaling pathways involved in the anticancer activities of propolis. Propolis exerts anticancer effects primarily by inhibiting cancer cell proliferation, inducing apoptosis through regulating various signaling pathways and arresting the tumor cell cycle, inducing autophagy, epigenetic modulations, and further inhibiting the invasion and metastasis of tumors. Propolis targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, ß-catenin, ERK1/2, MAPK, and NF-κB. Possible synergistic actions of a combination therapy of propolis with existing chemotherapies are also discussed in this review. Overall, propolis, by acting on diverse mechanisms simultaneously, can be considered to be a promising, multi-targeting, multi-pathways anticancer agent for the treatment of various types of cancers.

9.
Front Pharmacol ; 13: 909079, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754479

RESUMEN

Background: Doxorubicin as an anti-cancer drug causes cardiotoxicity, limiting its tolerability and use. The mechanism of toxicity is due to free radical production and cardiomyocytes injury. This research evaluated Rheum turkestanicum (R.turkestanicum) extract against doxorubicin cardiotoxicity due to its considerable in vitro antioxidant activity. Methods: Male Wistar rats received 2.5 mg/kg doxorubicin intraperitoneally every other day for 2 weeks to create an accumulative dose. R. turkestanicum was administrated at a dose of 100 and 300 mg/kg intraperitoneally from the second week for 7 days. On the 15th day, the animals were anesthetized and blood was collected from cardiac tissue for evaluation of alanine aminotransferase (ALT), cardiac muscle creatinine kinase (CK-MB), troponin T (cTn-T), lactate dehydrogenase (LDH), and B-type natriuretic peptide brain natriuretic peptide. A cardiac homogenate was also collected to determine superoxide dismutase (SOD), catalase Catalase Activity, malondialdehyde (MDA), and thiols. Histopathology was also performed. Results: Doxorubicin increased all cardiac enzymes and malondialdehyde, correlating with a reduction in SOD, catalase, and thiols. Histopathology revealed extracellular edema, moderate congestion, and hemorrhage of foci. In contrast, administration of R. turkestanicum ameliorated these doxorubicin-induced pathophysiological changes. Conclusion: This study revealed that the extract ameliorated doxorubicin-induced cardiac toxicity via modulation of oxidative stress-related pathways. Liquid chromatography-mass spectrometry analysis of R. turkestanicum indicated several components with potent pharmacological properties.

10.
Cancers (Basel) ; 14(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35406450

RESUMEN

The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.

11.
Oxid Med Cell Longev ; 2022: 2041769, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36824615

RESUMEN

The genus Papaver is highly esteemed in the pharmacy industry, in the culinary field, and as ornamental plants. These plants are also valued in traditional medicine. Among all Papaver species, Papaver somniferum L. (opium poppy) is the most important species in supplying phytochemicals for the formulation of drugs, mainly alkaloids like morphine, codeine, rhoeadine, thebaine, and papaverine. In addition, Papaver plants present other types of phytochemicals, which altogether are responsible for its biological activities. Therefore, this review covers the phytochemical composition of Papaver plants, including alkaloids, phenolic compounds, and essential oils. The traditional uses are reviewed along with their pharmacological activities. Moreover, safety aspects are reported to provide a deep overview of the pharmacology potential of this genus. An updated search was carried out in databases such as Google Scholar, ScienceDirect, and PubMed to retrieve the information. Overall, this genus is a rich source of alkaloids of different types and also contains interesting phenolic compounds, such as anthocyanins, flavonols, and the characteristic indole derivatives nudicaulins. Among other pharmacological properties, numerous preclinical studies have been published about the analgesic, anticancer, antimicrobial, antioxidant, and antidiabetic activities of Papaver plants. Although it highlights the significant impact of this genus for the treatment of a variety of diseases and conditions, as a future prospect, characterization works accompanying preclinical studies are required along with clinical and toxicology studies to establish a correlation between the scientific and traditional knowledge.


Asunto(s)
Alcaloides , Papaver , Papaver/química , Antocianinas , Alcaloides/química , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Medicina Tradicional
12.
Front Endocrinol (Lausanne) ; 12: 707126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408726

RESUMEN

A healthy adipose tissue (AT) is indispensable to human wellbeing. Among other roles, it contributes to energy homeostasis and provides insulation for internal organs. Adipocytes were previously thought to be a passive store of excess calories, however this view evolved to include an endocrine role. Adipose tissue was shown to synthesize and secrete adipokines that are pertinent to glucose and lipid homeostasis, as well as inflammation. Importantly, the obesity-induced adipose tissue expansion stimulates a plethora of signals capable of triggering an inflammatory response. These inflammatory manifestations of obese AT have been linked to insulin resistance, metabolic syndrome, and type 2 diabetes, and proposed to evoke obesity-induced comorbidities including cardiovascular diseases (CVDs). A growing body of evidence suggests that metabolic disorders, characterized by AT inflammation and accumulation around organs may eventually induce organ dysfunction through a direct local mechanism. Interestingly, perirenal adipose tissue (PRAT), surrounding the kidney, influences renal function and metabolism. In this regard, PRAT emerged as an independent risk factor for chronic kidney disease (CKD) and is even correlated with CVD. Here, we review the available evidence on the impact of PRAT alteration in different metabolic states on the renal and cardiovascular function. We present a broad overview of novel insights linking cardiovascular derangements and CKD with a focus on metabolic disorders affecting PRAT. We also argue that the confluence among these pathways may open several perspectives for future pharmacological therapies against CKD and CVD possibly by modulating PRAT immunometabolism.


Asunto(s)
Tejido Adiposo/inmunología , Enfermedades Cardiovasculares/patología , Inflamación/complicaciones , Enfermedades Renales/patología , Síndrome Metabólico/patología , Tejido Adiposo/patología , Animales , Enfermedades Cardiovasculares/etiología , Humanos , Enfermedades Renales/etiología , Síndrome Metabólico/etiología
13.
Biomolecules ; 10(3)2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210030

RESUMEN

Angiotensin-I converting enzyme (ACE) is a zinc metallopeptidase that has an important role in regulating the renin-angiotensin-aldosterone system (RAAS). It is also an important drug target for the management of cardiovascular diseases. Hemorphins are endogenous peptides that are produced by proteolytic cleavage of beta hemoglobin. A number of studies have reported various therapeutic activities of hemorphins. Previous reports have shown antihypertensive action of hemorphins via the inhibition of ACE. The sequence of hemorphins is highly conserved among mammals, except in camels, which harbors a unique Q>R variation in the peptide. Here, we studied the ACE inhibitory activity of camel hemorphins (LVVYPWTRRF and YPWTRRF) and non-camel hemorphins (LVVYPWTQRF and YPWTQRF). Computational methods were used to determine the most likely binding pose and binding affinity of both camel and non-camel hemorphins within the active site of ACE. Molecular dynamics simulations showed that the peptides interacted with critical residues in the active site of ACE. Notably, camel hemorphins showed higher binding affinity and sustained interactions with all three subsites of the ACE active site. An in vitro ACE inhibition assay showed that the IC50 of camel hemorphins were significantly lower than the IC50 of non-camel hemorphins.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/química , Camelus , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos/química , Peptidil-Dipeptidasa A/química , Animales , Especificidad de la Especie
14.
Antioxidants (Basel) ; 9(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019512

RESUMEN

Traumatic brain injury (TBI) is a major health concern worldwide and is classified based on severity into mild, moderate, and severe. The mechanical injury in TBI leads to a metabolic and ionic imbalance, which eventually leads to excessive production of reactive oxygen species (ROS) and a state of oxidative stress. To date, no drug has been approved by the food and drug administration (FDA) for the treatment of TBI. Nevertheless, it is thought that targeting the pathology mechanisms would alleviate the consequences of TBI. For that purpose, antioxidants have been considered as treatment options in TBI and were shown to have a neuroprotective effect. In this review, we will discuss oxidative stress in TBI, the history of antioxidant utilization in the treatment of TBI, and we will focus on two novel antioxidants, mitoquinone (MitoQ) and edaravone. MitoQ can cross the blood brain barrier and cellular membranes to accumulate in the mitochondria and is thought to activate the Nrf2/ARE pathway leading to an increase in the expression of antioxidant enzymes. Edaravone is a free radical scavenger that leads to the mitigation of damage resulting from oxidative stress with a possible association to the activation of the Nrf2/ARE pathway as well.

15.
Cells ; 9(11)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182523

RESUMEN

Visfatin/NAMPT (nicotinamide phosphoribosyltransferase) is an adipocytokine with several intriguing properties. It was first identified as pre-B-cell colony-enhancing factor but turned out to possess enzymatic functions in nicotinamide adenine dinucleotide biosynthesis, with ubiquitous expression in skeletal muscles, liver, cardiomyocytes, and brain cells. Visfatin exists in an intracellular (iNAMPT) and extracellular (eNAMPT) form. Intracellularly, visfatin/iNAMPT plays a regulatory role in NAD+ biosynthesis and thereby affects many NAD-dependent proteins such as sirtuins, PARPs, MARTs and CD38/157. Extracellularly, visfatin is associated with many hormone-like signaling pathways and activates some intracellular signaling cascades. Importantly, eNAMPT has been associated with several metabolic disorders including obesity and type 1 and 2 diabetes. In this review, a brief overview about visfatin is presented with special emphasis on its relevance to metabolic diseases. Visfatin/NAMPT appears to be a unique molecule with clinical significance with a prospective promising diagnostic, prognostic, and therapeutic applications in many cardiovasculo-metabolic disorders.


Asunto(s)
Enfermedades Cardiovasculares/enzimología , Enfermedades Metabólicas/enzimología , Nicotinamida Fosforribosiltransferasa/metabolismo , Animales , Ensayos Clínicos como Asunto , Humanos , Modelos Biológicos , NAD/metabolismo
16.
Biomolecules ; 10(3)2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155920

RESUMEN

Colorectal cancer (CRC) is the third most common type of cancer in terms of incidence and mortality worldwide. Here we have investigated the anti-colon cancer potential of Origanum majorana essential oil (OMEO) and its underlying mechanisms of action. We showed that OMEO significantly inhibited the cellular viability and colony growth of human HT-29 colorectal cancer cells. OMEO induced protective autophagy, associated with downregulation of the mTOR/p70S6K pathway, and activated caspase-8 and caspase-9-dependent apoptosis. Blockade of autophagy with 3-methyladenine (3-MA) and chloroquine (CQ), two autophagy inhibitors, potentiated the OMEO-induced apoptotic cell death. Inversely, inhibition of apoptosis with the pan-caspase inhibitor, Z-VAD-FMK, significantly reduced cell death, suggesting that apoptosis represents the main mechanism of OMEO-induced cell death. Mechanistically, we found that OMEO induces protective autophagy and apoptotic cells death via the activation of the p38 MAPK signaling pathway. Pharmacological inhibition of p38 MAPK by the p38 inhibitors SB 202190 and SB 203580 not only significantly decreased apoptotic cell death, but also reduced the autophagy level in OMEO treated HT-29 cells. Strikingly, we found that OMEO also induces p38 MAPK-mediated caspase-dependent cleavage of p70S6K, a protein reported to be overexpressed in colon cancer and associated with drug resistance. Our findings suggest that OMEO inhibits colon cancer through p38 MAPK-mediated protective autophagy and apoptosis associated with caspase-dependent cleavage of p70S6K. To the best of our knowledge, this study is the first to report on the implications of the p38 MAPK signaling pathway in targeting p70S6K to caspase cleavage.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Caspasas/metabolismo , Neoplasias Colorrectales/enzimología , Proteínas de Neoplasias/metabolismo , Aceites Volátiles/farmacología , Origanum/química , Proteolisis/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Neoplasias Colorrectales/patología , Células HT29 , Humanos , Aceites Volátiles/química
17.
Plants (Basel) ; 9(2)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019201

RESUMEN

The purpose of this study is to analyze the polyphenolic rich extract of Crocus sativus L. petals (CSP) in modulating liver oxidative stress and inflammatory response status against rifampicin isoniazid (INH-RIF) drug-induced liver injury. The INH-RIF was administered for 14 days with varying doses in Wistar rats, while silymarin was administered as standard dose. We report the defensive impacts of CSP against INH-RIF induced liver oxidative stress and proinflammatory cytokine. The CSP treatment at both doses significantly controlled all modulating biochemical hepatic injury indicators and resulted in the attenuation of arbitral INH-RIF damage. The components present in CSP identified by LC-ESI-Q-TOF-MS were found to be flavonoids and fatty acids. It can be inferred that CSP possesses a hepatoprotective capacity against INH-RIF-mediated hepatic injury, which may prove to be a medically beneficial natural product for the management of drug-induced liver injury.

18.
Front Oncol ; 9: 795, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497536

RESUMEN

Colorectal cancer is considered as the third leading cause of cancer death. In the present study, we investigated the potential anticancer effect and the molecular mechanism of Origanum majorana ethanolic extract (OME) against human colorectal cancer cells. We showed that OME exhibited strong anti-proliferative activity in a concentration- and time-dependent manner against two human colorectal cancer cell lines (HT-29 and Caco-2). OME inhibited cell viability, colony growth and induced mitotic arrest of HT-29 cells. Also, OME induced DNA damage, triggered abortive autophagy and activated a caspase 3 and 7-dependent extrinsic apoptotic pathway, most likely through activation of the TNFα pathway. Time-course analysis revealed that DNA damage occurred concomitantly with abortive autophagy after 4 h post-OME treatment while apoptosis was activated only 24 h later. Blockade of autophagy initiation, by 3-methyladenine, partially rescued OME-induced cell death. Cell viability arose from 37% in control group to 67% in group pre-treated with 3-MA before addition of OME. Inhibition of apoptosis, however, had a minimal effect on cell viability; it rose from 37% in control group to 43% in group pre-treated with Z-VAD-FMK. We also found that OME downregulated survivin in HT-29 cells. Our findings provide a strong evidence that O. majorana extract possesses strong anti-colon cancer potential, at least, through induction of autophagy and apoptosis. These finding provide the basis for therapeutic potential of O. majorana in the treatment of colon cancer.

19.
Front Oncol ; 9: 743, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456939

RESUMEN

We have previously demonstrated that carnosol, a naturally occurring diterpene, inhibited in vitro cell viability and colony growth, as well as induced cell cycle arrest, autophagy and apoptosis in human triple negative breast cancer (TNBC) cells. In the present study, we evaluated the ability of carnosol to inhibit tumor growth and metastasis in vivo. We found that non-cytotoxic concentrations of carnosol inhibited the migration and invasion of MDA-MB-231 cells in wound healing and matrigel invasion assays. Furthermore, gelatin zymography, ELISA, and RT-PCR assays revealed that carnosol inhibited the activity and downregulation the expression of MMP-9. Mechanistically, we demonstrated that carnosol suppressed the activation of STAT3 signaling pathway through a ROS-dependent targeting of STAT3 to proteasome-degradation in breast cancer cells (MDA-MB-231, Hs578T, MCF-7, and T47D). We show that blockade of proteasome activity, by MG-132 and bortezomib, or ROS accumulation, by N-acetylcysteine (NAC), restored the level of STAT3 protein. In addition, using chick embryo tumor growth assay, we showed that carnosol significantly and markedly suppressed tumor growth and metastasis of breast cancer xenografts. To the best of our knowledge, this is the first report which shows that carnosol specifically targets signal transducer and activator of transcription 3 (STAT3) for proteasome degradation in breast cancer. Our study further provide evidence that carnosol may represent a promising therapeutic candidate that canmodulate breast cancer growth and metastasis.

20.
Sci Rep ; 6: 21144, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26888313

RESUMEN

Recently, we reported that Rhus coriaria exhibits anticancer activities by promoting cell cycle arrest and autophagic cell death of the metastatic triple negative MDA-MB-231 breast cancer cells. Here, we investigated the effect of Rhus coriaria on the migration, invasion, metastasis and tumor growth of TNBC cells. Our current study revealed that non-cytotoxic concentrations of Rhus coriaria significantly inhibited migration and invasion, blocked adhesion to fibronectin and downregulated MMP-9 and prostaglandin E2 (PgE2). Not only did Rhus coriaria decrease their adhesion to HUVECs and to lung microvascular endothelial (HMVEC-L) cells, but it also inhibited the transendothelial migration of MDA-MB-231 cells through TNF-α-activated HUVECs. Furthermore, we found that Rhus coriaria inhibited angiogenesis, reduced VEGF production in both MDA-MB-231 and HUVECs and downregulated the inflammatory cytokines TNF-α, IL-6 and IL-8. The underlying mechanism for Rhus coriaria effects appears to be through inhibiting NFκB, STAT3 and nitric oxide (NO) pathways. Most importantly, by using chick embryo tumor growth assay, we showed that Rhus coriaria suppressed tumor growth and metastasis in vivo. The results described in the present study identify Rhus coriaria as a promising chemopreventive and therapeutic candidate that modulate triple negative breast cancer growth and metastasis.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Rhus , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Embrión de Pollo , Citocinas/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Metástasis de la Neoplasia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA